
EvoPopcorn: A Web-Native Distributed Artificial Life Simulation

Luis Zaman
BEACON Center for the Study of Evolution in Action

Michigan State University
luis.zaman@gmail.com

JavaScript is on the way to being the ideal programing language. Despite its
many shortcomings, the JavaScript community is growing astonishingly fast. The
ubiquity of browsers capable of running JavaScript on every new cellphone, television,
and even some kitchen appliances make it a potentially transformative technology that is
nearly 20 years oldi. In other words, the technology was clearly ahead of its time, but its
time has finally come. Thus, it is fascinating to consider how a ubiquitous computing
environment like the World Wide Web enables new artificial life applications.

To explore web native artificial life, we developed a simple simulation of 2-
dimensional rigid-body organisms living in a simple “cage” with food blocks that can be
manipulated by the userii. The entire simulation is carried out natively in the browser
through Canvas and the PhysicJS 2D physics engineiii. Each organism is composed of
four circular bodies attached by rigid constraints. The circles’ radii and angular velocities,
as well as the lengths of the rigid constraints determine the morphology as well as the
behavior of the organisms. Small and slowly rotating circles generally produce
organisms that settle towards the bottom of the cage, while large and quickly moving
circles generate erratically bouncing organisms.

We seed initial populations with randomly generated individuals, but allowed the
traits that determine morphology and behavior (radii, angular velocity, and rigid
constraint length) to mutate with a small probability. In every update, a random organism
is removed and the winner of a tournament (tournament size of 4) produces an offspring
to fill the vacant spot. Fitness in this simulation is simply the number of times an
organism has collided with food blocks. Thus, the populations will evolve better-suited
solutions to obtain food from their particular environment. How the environment shapes
selection is most evident when food blocks are on opposite ends of the cage (Figure 1).

Considering the ubiquity of browsers and an artificial life simulation running
natively within them, harnessing the interconnectedness of the World Wide Web is a
potentially transformative paradigm in artificial life. To begin exploring these
technologies, I extended the simulation presented above with the ability to serialize and
transmit organisms through the WebSocket API (specifically, through Socket.ioiv). This
technology allows each connected browser to establish a persistent socket to a central
server. Both the client and server can emit and subscribe to socket events, which
enables real-time communication between browsers. Thus, by adding a small probability
that a vacancy in the population is filled by an organism from the server rather than the
offspring of a local organism, we have a rudimentary implementation of migration
between browsers. In a sense, this is also a simple mechanism of distributed
computation within browsers.

 In the simulation, migrated organisms are temporarily colored bright pink when
they are first born. After a short period of time they are returned to their original color.
The source code for both the server and client are open-source and available on
figsharev. Currently, each population is seeded with a random color pallet with the hopes
that migrants will be easily identified. The physical connections between browsers are
arranged in a star topology (all browsers connected to a central server), but the
migration topology can take on any form from rings to small-world networks. In the
future, more advanced tracking and “scoring” of individual populations will be added.
This will allow us to measure the fitness of individuals across a range of environments,
and even identify winning lineages that eventually overtake other populations. With these
additions, it would be simple to create a game out of web based artificial life, where
users get points based on how many invasions their organisms successfully carryout,
and how many they prevent.
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
i http://en.wikipedia.org/wiki/ECMAScript
ii http://humpty.mmg.msu.edu:8080/
iii http://wellcaffeinated.net/PhysicsJS/
iv http://socket.io/
v Zaman, Luis (2014): EvoPopcorn - WebA'14. figshare.
http://dx.doi.org/10.6084/m9.figshare.1009782

Figure	 1:	 Evolution	 of	 different	 morphologies	 and	 behaviors	 depending	 on	 the	 environment.	 A	 and	 B	
show	 initially	 random	 populations	 in	 alternative	 environments	 (either	 low	 or	 high	 food).	 C	 and	 D	
show	 the	 resulting	 evolution	 after	 only	 a	 few	 minutes.	 	

