
Valency for Adaptive Homeostatic Agents:

Relating Evolution and Learning.

Theodoros Damoulas, Ignasi Cos-Aguilera, Gillian M. Hayes, and Tim Taylor

IPAB, School of Informatics, The University of Edinburgh,
Mayfield Road, JCMB-KB, EH9 3JZ Edinburgh, Scotland, UK
{T.Damoulas, I.Cos-Aguilera, G.Hayes, T.Taylor}@ed.ac.uk

http://www.ipab.inf.ed.ac.uk

Abstract. This paper introduces a novel study on the sense of valency

as a vital process for achieving adaptation in agents through evolution
and developmental learning. Unlike previous studies, we hypothesise that
behaviour-related information must be underspecified in the genes and
that additional mechanisms such as valency modulate final behavioural
responses. These processes endow the agent with the ability to adapt to
dynamic environments. We have tested this hypothesis with an ad hoc

designed model, also introduced in this paper. Experiments have been
performed in static and dynamic environments to illustrate these effects.
The results demonstrate the necessity of valency and of both learning and
evolution as complementary processes for adaptation to the environment.

1 Introduction

The relationship between an agent’s ability to monitor its internal physiology
and its capacity to display adaptation to its environment has received little
attention from the adaptive behaviour community. An aspect of this relationship
is the sense of valency, a mechanism evolved to foster the execution of beneficial
actions and to discourage those whose effect is harmful. Agents endowed with
this sense exhibit some advantage over others which cannot anticipate the effect
of some actions in their decision making. This facilitates the life of an agent in
a competitive environment. Formally, we have defined the sense of valency as
the notion of goodness or badness attached by an individual to the feedback from

the environment resulting from the execution of a behaviour. We therefore view
valency as a process occurring in a framework of interaction relating perception,
internal bodily dynamics and behaviour arbitration. We have implemented these
elements in a simulated animat, consisting of an artificial internal physiology [6,
5, 15], a behaviour repertoire, a selection module and a valency module. The goal
of this agent is to survive, ergo to maintain its physiological parameters within
their viability zone [2].

Previous work [1, 4] hypothesised genes to encode the valency of stimuli and
the behavioural responses to stimuli (represented as an evaluation network or as
a motivation system, respectively). Both studies use the valency as a feedback
loop that assesses and corrects their behavioural patterns. These studies focused



on the interaction between learning and evolution via the Baldwin effect [3, 9],
where certain action-related genes dominate and shield other genes encoding
the valency of related actions. They argue that random mutations allow devel-
opmental knowledge to be transferred to the genome, which may deteriorate the
valency-related ones. As stated by [1]: The well-adapted action network appar-

ently shielded the maladapted learning network from the fitness function. With

an inborn skill at evading carnivores, the ability to learn the skill is unnecessary.
However, we argue that this may be necessary in a variety of cases, e.g. if the
environment constantly changes, it does not seem reasonable to encode volatile
information in the genes (this may lead to the extinction of the species). Instead,
it seems wiser to genetically encode action-related information in an underspec-
ified manner to be completed via interaction with the environment (via reward
driven learning). If as a result of the combination of both processes this informa-
tion is transferred to the next generation, this would endow the next generation
with the necessary knowledge to survive while maintaining the flexibility for a
range of variation within its environment.

A model to test this hypothesis is introduced next with three different ver-
sions. Section 2 introduces the agent’s internal model. Section 3 presents the
three approaches examined, their corresponding elements and the results for
static and dynamic environments. Finally, Section 4 discusses the results ob-
tained.

2 Model Architecture

2.1 Internal Agent Structure

The agent’s internal physiology is a simplified version of the model proposed by
Cañamero [5]. In this model the agent’s internal resources are represented as
homeostatic variables. These are characterised by a range of operation and by
an optimal value or set point. They exhibit their status of deficit or excess via
a set of related drives [10], which together with the external stimuli configure
the agent’s motivational state [19]. For our case we are only interested in the
agent’s internal interpretation of the effect. Therefore, it is possible to simplify
the environment to its minimal expression: the feedback or effect per interaction.
This allows us to combine homeostatic variables and drives in a single parameter:
homeostatic drives. These drives decay according to

Level(t) = Level(t−1) × 0.9 +
∑

j

< effect of action >tj
(1)

where level is the value of a drive and effect of action the value of the effect
of executing a certain behaviour (an incremental transition of +0.1, 0.0 or -0.1
on the drives). To simplify, the drives are generic (e.g. energy related) since
we are mostly concerned with them in terms of their functionality (e.g. decay,
discretised states, etc.). Figure 1(b) shows a schematic view of a single drive
with its discretised states and the hard bounds.
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Fig. 1. Left: General Architecture. Right: A typical drive with 10 discretised states from
0.1 to 1.0. The drive has hard bounds below 0.1 and above 1.0 (ad-hoc) to ensure that
agents operate within limits.

The selection mechanism consists of choosing the action exhibiting the largest
valency. As we shall see, the association action-valency is learned during the
lifetime of the agent.

2.2 Lifetime Learning

Valency is interpreted by the agent as the relative value of executing a behaviour.
This association is learned during lifetime via the valency module (cf. center-
bottom in Fig. 1(a)) and directly affects the behaviour intensities according to
the effect that executing a behaviour has on the internal physiology.

The learning of the agent is modeled as a ‘full’ reinforcement learning prob-
lem [17]. Every action and state transition of the agent’s physiological space is
evaluated according to the reward function that is provided by genetic evolution.
The learning has been modeled as a Temporal Difference (TD) algorithm [16],
since this learns by experience and without bootstrapping, i.e., lacking a model
for the environment. This should be of advantage in dynamic environments.

The Q-learning algorithm was used with the Q-Values representing the va-
lency of actions and the update rule (2) indirectly associating the effect of an
action to a specific valency through the individual reward function.

Q(st, at)← Q(st, at) + α [rt+1 + γ max
a

Q(st+1, a)−Q(st, at)]. (2)

2.3 Genetic Evolution

The valency module is part of both processes, developmental and genetic. It acts
as a link between the two, using genetic information and lifetime experience in
order to create an individual sense of valency. According to our implementation



the core element of valency is the reward function which is the genetically en-
coded information. This is independent of the behaviours and could be encoded
into the genome in a biologically plausible manner.

The reward function is evolved by a standard GA [12]; it is either directly
encoded in the animat’s chromosome or indirectly encoded as the weights of a
neural network. In other words, each animat is genetically “defined” to assign
a utility to each change in its physiological state due to the execution of a
behaviour.

The role of genetic evolution and developmental learning in the mechanism
of valency, the evolutionary nature (direct or indirect encoding) of the reward
function and their effect on adaptation to dynamic environments are, respec-
tively, the issues we have addressed with three different models, introduced in
the next section.

3 Experiments and Results

In order to examine the effect of valency in the developmental and genetic
processes, this approach has been implemented with direct and indirect encoding
of the reward function (Models 1a and 1b), and compared to a model that uses
genetic evolution only (Model 2). Models 1a and 1b are used to demonstrate that
the instabilities of Darwinian models in dynamic environments [11, 14] are due
to having action selection (as opposed to just the reward function) encoded in
the genome. Model 2 is used to examine the necessity of developmental learning
in stable and dynamic environments.

Models 1a and 1b test different evolutionary encodings of the reward func-
tion. In Model 1a the reward function is directly encoding on the chromosome,
whereas in Model 1b the chromosome encodes synaptic weights of a neural net-
work that estimates the reward function. This second encoding method has been
extensively used and tested in previous work [4, 8, 13, 14, 18].

Finally, we examine the above approaches in both stable and dynamic envi-
ronments in order to observe their effect on the adaptability of our animats.

3.1 Experimental Setup

The environment has been modeled in terms of deterministic reward. Every
time the agent performs an action, the environment feedbacks a physiological
effect, which is unique for each behaviour. A static environment is characterised
by relating to each behaviour a unique effect, which is maintained throughout
generations (e.g. action 1 has always a -0.1 effect). In contrast, the effect related
to each behaviour is inverted every generations for dynamic environments (action
1 changes effect from -0.1 to +0.1).

The Q-Values represent the value of selecting a specific action in a given state.
Q-Values model the valency of actions and qualify an execution as successful or
not. Since for every drive we have 10 discrete states and in every state the same
action set is available, the Q-Value table for describing every state-action will be



a matrix of dimensions 10× (#Actions per state×#Drives). The initialization
of the Q-Values has always been performed by setting them to 1 and the update
rule 2 converged those values to the individual valency of each agent based on
its reward function.

The learning episode of selecting actions for a number of steps is repeated for
at least 10,000 cycles where convergence of the best possible behaviour according
to the individual reward function is ensured. A competition procedure was used
to assign the fitness value at each agent at the end of the learning cycle (if
applicable). The agent was initialized on a minimum drive level, it was allowed
to use its action-selection mechanism (converged Q-values) for a specific number
of steps and it was scored according to its overall performance. The target was
to reach satiation on its drive(s) and to remain at that level (1.0).

The metrics used in our study are the average and maximum fitness progres-
sions through generations of animats. The maximum fitness score each time (10
for single drive and 20 for double drive cases) indicates a perfect performance
over the competition cycle and a successfully evolved/developed sense of valency.

3.2 Learning & Evolution with Indirect Encoding of Action
Selection

As has been shown previously [1, 11, 14], direct encoding of action selection leads
to animats that are behaviouraly predisposed. Consequently, their fitness pro-
gressions in dynamic environments suffer from relative instabilities. To over-
come these limitations, our Model 1a (RL & GA) was investigated (Fig. 2),
where the genome is not directly encoding action-selection. Instead it carries
information (reward for state transitions) used to build the behaviour-selection

mechanism via developmental learning.
An alternative version of the above implementation, Model 1b (RL &

GA with NN), which uses a neural network for the provision of the reward
function (Fig. 3), was also examined. The genome is still indirectly encoding
action selection.

3.3 Strictly Evolutionary Approach

The final model (Model 2) was used to test the necessity of lifetime learning
as a complementary process to genetic evolution. Model 2 (Q-Evolution) is
strictly evolutionary (Fig. 4).

3.4 Learning & Evolution, or Evolution Alone?

Static Environment The base case considered first is that of a static envi-
ronment with an animat endowed with a single drive. As seen in Fig. 5, every
approach manages to produce ideal solutions, i.e., animats with a sense of valency
are able to guide selection toward the satiation of the drive. The results confirm
our hypothesis that a combined framework of learning and evolution through



DRIVE(s) ENERGY

STATE

Q-LEARNING RULE

BEHAVIOUR SELECTION
 epsilon-greedy policy

ACTION
Q-VALUES

EFFECT

REWARD

REINFORCEMENT LEARNING - Part A

 

CONVERGED Q-VALUES

GENE CHROMOSOMES

RANDOM INITIAL POOL

COMPETITION
FITNESS VALUE
  f = f ’ / < f >

ROULETTE WHEEL SELECTION*
           CROSSOVER

  MUTATION, INVERSION

GENETIC ALGORITHM - Part B

REWARD FUNCTION
  TABLE LOOK-UP

ACTION

STATE

Fig. 2. Model 1a (RL & GA) of combined Learning and Evolution. The chromosome
encodes the reward function of each agent (magnitudes in the range 0-10)and the Q-
learning update rule is used to create the action selection mechanism through lifetime.
Step-size parameter α=0.1 and ǫ=0.1

BIAS St+1S t a

4 Inputs

 24 Weights

6 Hidden = Sigmoid ( Inputs*Weights )

18 Weights

max(Output)

3 Output = Sigmoid ( Hidden*Weights )

REWARD

4-6-3 ARCHITECTURE

-1 0 +1

where " * " inner product.

# Drives

Fig. 3. The Neural Network architec-
ture used in Model 1b (RL & GA with
NN). The input is the states, the bias,
and the action whereas the output is the
magnitude of reward. In this case a sim-
ple set of reward was used with +1, 0 or
-1 possible values. The bias is set to 1
and the network operates with a stan-
dard sigmoid function. In the case of
more then one drives an additional node
inputs that information.

 

COMPETITION
FITNESS VALUE
  f = f ’ / < f >

GENE CHROMOSOMES

RANDOM INITIAL POOL

ROULETTE WHEEL SELECTION *
               CROSSOVER

  MUTATION, INVERSION

Q-VALUES

Q-EVOLUTION MODEL

Fig. 4. Model 2 (Q-Evolution), im-
plementing only standard Evolutionary
techniques without a Learning cycle. The
valencies of actions (Q-Values) are di-
rectly evolved instead of the reward
function and hence the genome of agents
encodes information that is directly con-
nected to the action selection mecha-
nism. The model is operating without a
valency module.



5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

# Generations

F
itn

es
s 

Le
ve

l (
m

ax
=

10
)

Average Fitness Comparison between the models
Stable environment − Single Drive             

RL&GA
RL&GA with NN
Q−Evolution

(a) Average

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Maximum Fitness Comparison between the models
Stable Environment − Single Drive             

# Generations

F
itn

es
s 

Le
ve

l (
m

ax
=

10
)

RL&GA
RL&GA with NN
Q−Evolution

(b) Maximum

Fig. 5. Average and Maximum Fitness results for the three models on a stable envi-
ronment where the animats have a single drive. The fitness function requires optimal
behaviour selection in order to achieve maximum status. Notice how the models utilizing
developmental learning achieve higher fitness levels in a few number of generations.

the valency module performs better than those lacking it. However, the strictly
evolutionary approach (Q-Evolution model) still manages to achieve, in certain
occasions, maximum fitness and to increase the average of the population. The
approach that directly evolves the reward function (RL & GA) achieves a higher
average fitness but is less stable in the maximum fitness development compared
with the alternative evolution of synaptic weights (RL & GA with NN).
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Fig. 6. Average and Maximum Fitness results for the three models on a stable envi-
ronment where the animats are utilizing two drives. The results are for a “loose” fitness
function that allows suboptimal behaviour selection.

The double drive case in a stable environment increases the difficulty of the
task and explores the capabilities of all the approaches. The results in Fig. 6
compare the models on a “loose” fitness function (excess competition steps) that
allows for suboptimal behaviour selection (the animat can achieve maximum fit-
ness without selecting always the best possible action). For a fitness function



requiring optimal behaviour selection (that is, always to choose the best behav-
iour), the strictly evolutionary approach fails to produce a perfect solution even
after 50,000 generations [7].

Dynamic Environments The effect of the dynamic environment on the adapt-
ability of the animats is shown in Fig. 7. The extreme dynamic case is consid-
ered where the effect of actions is changing at every generation. Under these
circumstances the models implementing a combined framework of learning and
evolution via an indirect encoding of action-selection, manage to produce ani-
mats able to adapt to the environment overcoming the initial fluctuations on the
maximum fitness of the population.
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Fig. 7. Average and Maximum Fitness results for the three models on a dynamic envi-
ronment where the animats are utilizing two drives. Every 1 generation the environment
changes, causing the effect of actions to be inverted. Only the models implementing both
developmental and genetic approaches are adaptable to the changes and able to achieve
consecutive maximum fitness solutions. The Q-Evolution model is unstable.
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In contrast, the Q-Evolution model, which implements a strictly evolution-
ary approach, is unable to adapt to the dynamic environment as it is shown
by the low-value and fluctuating average and maximum fitness developments.
Even in a dramatically less severe environment, where the changes occur every
600 generations (Fig. 8), evolution alone is unable to follow the changes of the
environment and both the average and maximum fitness of the population have
a sudden drop at the instance of the change.

3.5 Direct or Indirect Encoding of Action Selection?

Contrary to the results of [11, 14], the average fitness progression of the combined
learning and evolution approach does not suffer from large oscillations every
time the environment changes. This is due to the fact that action selection is
underspecified in the genes and hence the animats do not have to unlearn and

relearn the right behaviour. They just have to learn it during their lifetime.
This demonstrates and proves our hypothesis that underspecified encoding of
action selection, in a combined framework of developmental learning and genetic
evolution, endows animats with a further adaptive skill that facilitates their
survival.

In contrast, animats with an “inborn” skill for selecting and executing a
behaviour have to re-learn it at every change of the feedback from the environ-
ment. This is a dramatic disadvantage, leading to the animats’ extinction when
the genetically encoded behaviour becomes a deadly option.

4 Discussion and Conclusion

In the present study we have examined the role of valency as a process re-
lating developmental learning and genetic evolution to assist adaptation. We
implemented two different approaches, one that is strictly evolutionary and one
that makes use of both developmental and evolutionary mechanisms in order to
compare and draw conclusions on the nature of valency. Furthermore, we have
tested their performance on both stable and dynamic environments in order to
investigate their adaptability.

It has been demonstrated that in both stable and dynamic environments
a combined framework of learning and evolution performs better, since agents
achieve higher fitness in fewer generations. In the case of an animat equipped
with two drives, or in a dynamic environment, evolution alone fails to find a
perfect solution, implying that a valency mechanism is necessary if the animats
are to adapt at all. Furthermore, we have shown that action selection has to
be underspecified in the genome for the sake of adaptation. Instead of directly
encoding action selection (as in [1, 14, 11]), the genes should indirectly encode
that information in order to avoid becoming predisposed toward the execution
of a behaviour that could later become harmful.
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