
Replaying the Tape:An Investigation into the Role of Contingency in EvolutionTim Taylor and John HallamDepartment of Arti�cial Intelligence, University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QL, U.K.timt@dai.ed.ac.ukAbstractThe role of contingency (random events) in an arti-�cial evolutionary system is investigated by runningthe system a number of times under exactly the sameconditions except for the seed used to initialize therandom number generator at the beginning of eachrun. Twelve di�erent measures were used to track thecourse of evolution in each run, and \activity wavediagrams" were also produced (Bedau & Brown 1997).The results of 19 runs are presented and analyzed. Theperformance of every run was compared with each ofthe others using a non-parametric test (a randomiza-tion version of the paired-sample t test). When com-paring absolute values of the measures between theruns, some signi�cant di�erences were found. How-ever, looking at the di�erence in values between ad-jacent sample points for a run, no run was signi�c-antly di�erent to any other for any of the measures.This suggests that the general behaviour is the samein all runs, but the accumulation of di�erences res-ults in signi�cantly di�erent outcomes. The resultslead us to propose a rule of thumb for future experi-ments with the system: to check whether the outcomeof any particular experiment is robust to contingencyin the evolutionary process, at least nine runs should beconducted using di�erent seeds for the random numbergenerator, to be con�dent of seeing a variety of results.The results are likely to be applicable to other A-Lifeplatforms of self-replicating computer programs, butat this stage can probably tell us little about the roleof contingency in biological evolution.IntroductionThere is much debate in the �eld of evolutionary bio-logy over the role of contingency (\historical acci-dents") in determining the course of evolution (see, forexample, (Gould 1989), and, for a 
avour of the ensu-ing debate, (Ridley 1993; Gould 1993; McShea 1993)).If evolution were to be re-run on Earth, starting fromthe same initial conditions and proceeding for another4 billion years, encountering the same sorts of per-turbations from the physical environment that it en-countered the �rst time around, what sort of a world

would exist today? Would homo sapiens evolve again,or might life not even make the transition from proka-ryotic to eukaryotic cells, or maybe not even reach thecellular stage at all? What, in other words, would hap-pen if \the tape were played twice"?The same question arises when considering arti�cialevolutionary systems, where we have the advantage ofbeing able to \replay" evolution under experimentalcontrol. Indeed, in considering the performance of anyevolutionary system, we generally wish to disentanglethe relative in
uence of three factors: (1) contingency,(2) performance due to the particular design of thesystem, and (3) performance which may be general toa wide class of evolutionary systems (Taylor & Hallam1997). However, considering the importance of thesequestions, very little has been published to date on therole of contingency in arti�cial systems. Fontana andBuss have done some excellent work on the subject,choosing to focus on self-maintaining organizations inan arti�cial chemistry, rather than presupposing theexistence of self-replicating entities (Fontana & Buss1994b; 1994a). Their results suggest that a numberof generic organizational features may be expected toemerge in any comparable system.Fontana and Buss have not, as yet, witnessed theemergence of high-level self-reproducing entities intheir work (and that was not their primary goal).There do, however, exist a growing number of A-Life systems which presuppose the existence of self-replicators (e.g. Ray's Tierra (Ray 1991), Adami etal.'s Avida (Adami & Brown 1994), Skipper's Com-puter Zoo (Skipper 1992), and our own platform, Cos-mos (Taylor & Hallam 1997; Taylor 1997)). Most pub-lications relating to these systems mention in passingthat the results being presented were typical of a largenumber of runs, but details are rarely given, and, toour knowledge, no systematic study of the role of con-tingency in such systems has yet been published. Onefactor that may have contributed to this omission isthe di�culty of dealing sensibly with the huge amounts



of data that such simulations can produce, which canmake it di�cult to usefully compare one run with an-other. However, Bedau et al. have recently been de-veloping a number of techniques for visualizing evolu-tionary activity, and have also proposed some quant-itative measures of evolution (Bedau & Packard 1991;Bedau et al. 1997; Bedau & Brown 1997). These ana-lysis tools provide some fairly straightforward ways ofcomparing the results of a number of evolutionary runs,both qualitatively and quantitatively.The purpose of this paper is twofold: (1) to report anexperiment that runs an arti�cial life system a numberof times, varying just the random number seed betweenruns, in order to compare how each run evolves andtherefore get some idea of the role of contingency in thesystem; and (2) to use a variety of measures and visual-ization techniques to compare the runs, and hopefullyto ascertain which are the most useful measures forsuch comparisons. The paper ends with a discussionof the results, including the extent to which they maybe generalized to other evolutionary systems.The A-Life SystemCosmos is a Tierra-like platform that supports a pop-ulation of self-replicating computer programs livingin an environment. Its design di�ers from Tierrain a number of ways, the most relevant of which,for the present discussion, are described below. Formore details about Cosmos, refer to (Taylor 1997;Taylor & Hallam 1997), or look on the worldwideweb at http://www.dai.ed.ac.uk/daidb/people/homes/timt/research.html. The source code is avail-able from the authors.Spatial Organization For the runs reported inthis paper, the environment was con�gured as a two-dimensional toroidal grid. There is evidence that suchspatial organization, where interactions between pro-grams are restricted to a program's local neighbour-hood, can promote heterogeneity and prevent prema-ture convergence (Adami & Brown 1994).Energy Collection At each time step, energy isdistributed throughout the grid. Programs must col-lect energy from the environment in order to executetheir instructions. If a program's internal energy levelfalls below a certain threshold, it dies. In addition,a maximum population size can be speci�ed for thesystem. If this is the case, when the population max-imum is reached, a fraction of the programs are killedo� stochastically, but those with low internal energyhave a higher probability of being killed. Programstherefore have to concern themselves with energy col-lection as well as reproduction, and thus have some

degree of control over their own lifespans (i.e. thosethat collect more energy are less likely to be killed).Communication Unlike in Tierra, programs in Cos-mos can not directly read the code of other programs.However, any program can compose an arbitrary mes-sage (a string of bits) and transmit it to the local en-vironment, and any program can issue instructions toreceive such messages from the environment and inter-pret them how it wishes. However, in the experimentsreported here, such communication did not evolve, sothe programs generally had fewer ecological interac-tions than, for example, Tierran parasites that executethe code of other programs.Mutations and Flaws As a run proceeds, variationmay begin to appear amongst the programs in the en-vironment, caused by the action of two di�erent mech-anisms: (1) Mutations can a�ect any program, by therandom 
ipping of one or more bits in the program'scode or associated structures. The mutation rate is asystem-wide parameter, and does not vary throughoutthe run; (2) Flaws. While a program in running, a
aw may occur in its execution. If this happens, theinstruction which was about to be executed will, withequal probability, either be executed twice consecut-ively, or not at all. The rate at which 
aws occur isdetermined by a parameter owned by each individualprogram. Being a part of the program, it is thereforepossible for the 
aw rate to evolve over time (by beingchanged by mutations) in a lineage of individuals.On a technical note, as this paper is concerned withthe role of chance events in evolution, the choice ofrandom number generator (RNG) is particularly rel-evant, as di�erent types of RNG have di�erent prop-erties. Cosmos uses the bsd random() RNG, whichuses the linear feedback shift register generation tech-nique. bsd random() does not su�er from some of thede�ciencies of many versions of the standard random()RNG. Measurement TechniquesIn any population of self-replicating entities which arecompeting against each other for resources required forreplication (e.g. energy and materials), there are threefactors which determine the rate at which any par-ticular type of replicator will spread throughout thepopulation (Dawkins 1989). These are the life-span orlongevity of the replicator, the rate at which it replic-ates (its fecundity), and the number of errors in makeswhile producing copies of itself (its copy-�delity). Anumber of measures were chosen to track changes ineach of these three factors through an evolutionary run.For longevity, we looked at the age at death of each



program. Speci�cally, for time slice windows of equalwidth from the start to the end of the run, we plot-ted the age at death of each program that died withinthat time slice window. Example plots are shown inFigure 2. The plots for measures of fecundity andcopy-�delity, described below, also used this window-ing technique. For the plots for all three of thesefactors, the data is pruned by only plotting values forindividual programs of types which achieved a concen-tration of at least two individuals at some time duringthe run. In the plots, the darkness displayed at anypoint re
ects the number of individual programs tak-ing that particular value at that particular time.For fecundity, we looked at two measures: the num-ber of time slices between the �rst and second success-ful replication of each program (the replication period)(this could obviously only be applied to programs thatsuccessfully replicated at least twice in their lifetime),and the length of programs. Example plots for replic-ation period are shown in Figure 9.For copy-�delity, we looked at three measures: the
aw rate, the number of faithful (error-free) replica-tions made by individual programs over their lifetime,and the number of unfaithful replications. Exampleplots of these three measures are shown in Figures 3and 4.In addition to these six measures, the populationsize throughout the run was also recorded, as was thepopulation diversity (the number of di�erent types ofprogram in the population).Four measures suggested by Bedau et al. wereused: the Activity (presence), Mean Activity (pres-ence), Activity (concentration), and Mean Activity(concentration), along with their visualization tech-nique of plotting \activity distribution functions" (alsoreferred to as \activity waves"). The basic idea behindall of these techniques is the same, involving the notionof the evolutionary activity of each genotype (type ofprogram) in the population:\the evolutionary activity ai(t) of the ith geno-type at time t [is] its concentration integrated overthe time period from its origin up to t, providedit exists:ai(t) = � R t0 ci(t)dt if genotype i exists at t0 otherwisewhere ci(t) is the concentration of the ith genotypeat t. A genotype's evolutionary activity ... re
ectsits adaptedness (relative to the other genotypesin the population) throughout its history in thesystem." (Bedau & Brown 1997)Activity (concentration) is de�ned at time t asPi ai(t). Activity (presence) is de�ned similarly, but

with ci(t) de�ned to simply re
ect whether genotypei exists at time t, rather than being a measure of con-centration (i.e. ci(t) is 1 if genotype i exists at t,and 0 otherwise). Mean Activity (concentration) andMean Activity (presence) are de�ned as their respect-ive Activity measures divided by the diversity (numberof di�erent genotypes) of the population at t.For a fuller explanation of these measures and thereasons they are de�ned as they are, refer to (Bedauet al. 1997; Bedau & Brown 1997; Bedau & Packard1991).To end this section, we acknowledge that paleobio-logists have developed their own suite of measures ofbiological evolution. Daniel McShea has recently pub-lished some particularly interesting work on tests forevolutionary trends (McShea 1994), and de�nitions ofcomplexity (McShea 1996; 1991). Ideally, we wouldlike to be able to use the same set of measures forstudying both natural and arti�cial evolution. Unfor-tunately, the amount of evolutionary change occurringin Cosmos in the runs reported here is really very smallcompared to the sorts of macroscopic trends that Mc-Shea's measures were designed to track, so it is notclear that these measures can usefully be applied toarti�cial evolutionary systems (or at least to Cosmos)at present. MethodNineteen runs of Cosmos were initialized, each withexactly the same ancestor programs, and exactly thesame parameter values except for the seed for the ran-dom number generator.Most of the parameters took on the system'sdefault values; those that did not are listed inthe Appendix. The most salient of these aregrid size, set to 40 (i.e. a 40 x 40 square en-vironment), max cells per process, set to 800, andnumber of timeslices, set to 300,000.For each completed run, the measures described inthe previous section were investigated. To recap, thesemeasures were as follows:1. Program age at death2. Replication period (time between 1st and 2ndfaithful replication)3. Program length4. Flaw rate5. Number of faithful replications per program6. Number of unfaithful replications per program7. Population size8. Population diversity9. Activity (presence)
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Figure 1: Population size, Runs 14 (left) and 18 (right)10. Mean activity (presence)11. Activity (concentration)12. Mean activity (concentration)13. Activity waves ResultsFor each measure, the results from each of the 19 runswere compared. (In the following, the pairs of run res-ults displayed in Figures 1{9 and Figure 15 were gener-ally chosen because they illustrate noticeably di�erentresults.)Population Size, Age at Death, Flaw Rate,Number of Faithful Replications, Numberof Unfaithful Replications.In each run, the population size rose rapidly from theinitial value (64 ancestors) up to 800, the maximumnumber allowed. Whenever this ceiling was reached,10% of the population was killed o� stochastically, butaccording to each program's internal energy levels (asdescribed earlier). After the ceiling had �rst beenreached, the population size 
uctuated in the regionof around 700-800 programs for the rest of the run.Typical population size graphs are shown in Figure 1.No trends were found for program age at death, 
awrate, number of faithful replications per program, andnumber of unfaithful replications per program. That is,for each of these measures, the distribution of valuesacross the population showed no change right throughthe run. In addition to showing no trends, the absolutevalues of the measures were generally very similar indi�erent runs. Example graphs for these measures areshown in Figures 2 (age at death), 3 (
aw rate), and 4(faithful and unfaithful replications per program). InFigures 2 and 3, the plot on the left hand side shows arepresentative graph of the measure, as observed in themajority of the runs. The plots on the right hand sideof Figures 2 and 3 show slightly unusual or noteworthycases.For Age at Death (Figure 2), there are a couple ofpoints to note. Most obviously, there is considerable

structure in the distribution of ages at which organ-isms die. This is interpreted as indicating that thecycle of births and deaths in the population is wellsynchronized throughout the run. The �gure showsthat the majority of programs live for some multipleof a little over 130 time slices, with fewer programssurviving for each successive multiple. This �gure of130 time slices corresponds very well with the time ittakes the programs to replicate (see Figure 9). The ob-vious explanation is that each time the population sizereaches the ceiling of 800 programs, a number of pro-grams die, creating space for the remaining programsto reproduce. Once this reproduction stage occurs, thepopulation size is soon at the ceiling again, so the cyclerepeats. The extinctions triggered by the populationsize hitting the ceiling are therefore periodic, resultingin the observed distribution of ages, with most organ-isms surviving for an integral multiple of the period ofthis cycle. The second point about the Age at Deathplots is that, in some runs, a slight kink in seen in them(e.g. in the middle section of the plot for Run 10, onthe right hand side of Figure 2). Having just discoveredthat age of death is related to the replication periodof the programs, it is not surprising to see that thesekinks are associated with times of signi�cant change inthe replication period of the programs. For the graphof replication period for run 10, corresponding to theAge at Death plot on the right hand side of Figure 2,see the right hand side of Figure 9.For 
aw rates (Figure 3), in 16 out of the 19 runs,very few programs with 
aw rates di�erent to that ofthe ancestor programs appeared throughout the run.However, in three runs (3, 11 and 19), the whole popu-lation moved to a higher rate during the run (the �guree�ectively shows the reciprocal of the 
aw rate, so theincrease in 
aw rate appears as a downward trend). Ifthese changes in 
aw rate were adaptive, one might ex-pect to see corresponding changes in other measures,particularly the number of faithful and unfaithful re-productions per organism. However, no such trendswere observed (the graph of number of unfaithful re-productions per organism for Run 3, for example, isshown on the right hand side of Figure 4). It thereforeappears that these changes in 
aw rate were the resultof random (genetic) drift.Activity (presence), Mean Activity(presence), Activity (concentration), MeanActivity (concentration), Diversity,Program Length, Replication Period.To recap, the measures just discussed generally showedno trends, and their absolute values were very sim-ilar across di�erent runs. In contrast, trends were ob-
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Figure 2: Age at Death, Runs 5 (left) and 10 (right)
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Figure 3: 1FlawRate , Runs 8 (left) and 19 (right). Thevertical axis is scaled by a factor of 106.served in seven of the other measures (i.e. Activity(presence), Mean Activity (presence), Activity (con-centration), Mean Activity (concentration), Diversity,Program Length and Program Replication Period|discussion of the wave plots will be left until the end ofthe section), with noticeable di�erences between someof the runs. Plots for some of these measures arepresented for two example runs (17 and 10) in Fig-ures 5{9.Ideally, we would like to know whether the di�er-ences in these measures between any of the runs arestatistically signi�cant. Such di�erences would indic-ate that evolution might genuinely be treading a dif-ferent path, for no other reason than the di�erent seedused for the random number generator when the runscommenced. The choice of a statistical test for thistask was not immediately obvious. We wished to avoidparametric tests, as we did not want to make assump-tions about the population parameters (for example,there is no reason to suspect that any of the measureswe are looking at are normally distributed across allpossible evolutionary runs).We therefore chose a non-parametric method|arandomization version of the paired sample t test (see,for example, (Cohen 1995)). For each measure of in-terest, this test will tell us, for each run, which otherruns produced signi�cantly di�erent results. The testcan indicate whether two samples are related withoutany reference to population parameters. The proced-
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Figure 4: Number of Faithful Replications per Program,Run 6 (left). Number of Unfaithful Replications per Pro-gram, Run 3 (right)
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Figure 5: Activity (concentration), Runs 17 (left) and 10(right)ure used was as follows:Procedure: Randomization Version of thePaired-Sample t Test For each run, 10 sampledata points were extracted, each one representing thevalue of the measure in question at one of 10 equallyspaced times throughout the run.The basic idea of the paired sample t test in thiscase is to consider the 10 sample points for pairs ofruns in turn. By doing pairwise tests at 10 samplepoints we are comparing the measures at a numberof points through the run, with no point having moresigni�cance than any other. For each pair of runs, thedi�erence between corresponding samples is calculated,together with the mean value for the 10 di�erences. Wethen ask what the likelihood is of achieving this meandi�erence under the null hypothesis that the two runsare statistically equivalent. The method by which thisis done will be explained shortly.Obtaining Raw Sample Points In the case ofmeasures which are already statistics of the whole pop-ulation at any given time (i.e. both forms of the Activ-ity measure, both forms of the Mean Activity meas-ure, and Diversity), these 10 sample points could betaken directly from the value of the measure at the ap-propriate time. However, to prevent high-frequency
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Figure 6: Mean Activity (concentration), Runs 17 (left)and 10 (right)
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Figure 7: Diversity, Runs 17 (left) and 10 (right)changes in these measures from producing aberrantresults, the measures were �rst smoothed before thesamples were taken (using median-smoothing with awindow of 10,000 time slices).In the case of the measures where the existing dataconsisted of multiple values at each time slice, eachrepresenting individual programs (i.e. the ProgramLength and Replication Period measures), each of the10 sample points was produced by taking the medianvalue of all values lying within a window of 1000 timeslices around the time slice being sampled.Obtaining Di�erenced Sample Points Becauseof the cumulative nature of evolution, it is possiblethat a small di�erence in the sampled value of a meas-ure early on in a pair of runs will be magni�ed into alarge di�erence later on, even if the two runs are ac-tually proceeding in a fairly similar fashion. In orderto gauge the magnitude of this e�ect, a duplicate setof tests was run, which used the di�erence in valuebetween adjacent sample points as the �gure to com-pare between runs, rather than the absolute value ofthe sample points. Using di�erenced data should re-duce the in
uence of any cumulative disparity betweenruns.Testing for Signi�cance We are considering thedi�erence in values between corresponding samplepoints in a pair of runs. Under the null hypothesis that
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Figure 8: Program Length, Runs 17 (left) and 10 (right)
100

110

120

130

140

150

160

0 0.5 1 1.5 2 2.5 3
x 105Time slice

R
ep

lic
at

io
n 

P
er

io
d

Run 17

100

110

120

130

140

150

160

0 0.5 1 1.5 2 2.5 3
x 105Time slice

R
ep

lic
at

io
n 

P
er

io
d

Run 10

Figure 9: Replication Period (interval between �rst andsecond faithful replications), Runs 17 (left) and 10 (right)the two runs are equal, however, it is equally likely thatthese values would be reversed (i.e. for sample point nfor runs A and B, the null hypothesis is that the valuesAn from run A and Bn from run B are just as likelyto have come from the other run|An from run B andBn from run A). If this were the case, the di�erencebetween the values would be the same as before, butwith the sign reversed. We can test for the signi�canceof the observed mean di�erence by constructing thedistribution of all mean di�erences obtained from look-ing at each possible combination of each of the pairedsamples into one or other of the runs. As there are10 paired samples, there are 210 (1024) such combin-ations. The exact procedure is listed below (adaptedfrom (Cohen 1995)), which may make things clearer:1. For run I and J, if SI and SJ are lists of the 10sample data points for each run, construct a list Dof the di�erences between these values, D = SI�SJ .Denote the mean of these di�erences �xD .2. if �xD = 0p = 0:5else(a) Set a counter C to zero.(b) for i = 0::1023� Construct a list D� such that D�j = Dj if bij = 0,or D�j = �Dj if bij = 1, for j = 1::10, where bij



is the jth digit of i in base 2.� denote the mean of the new list �xD�� if �xD > 0if �xD� � �xD , then increment C by oneelse if �xD < 0if �xD� � �xD , then increment C by oneendif(c) p = (C=1024)p is the (one-tailed) probability of achieving a resultgreater than or equal to �xD (or less than or equal to �xDif �xD < 0) by chance under the null hypothesis. Thatis, p is the probability of incorrectly rejecting the nullhypothesis that systems I and J have equal populationmean scores for the measure in question.For each of the seven measures being considered(Activity (presence), Mean Activity (presence), Activ-ity (concentration), Mean Activity (concentration),Diversity, Program Length and Replication Period),this procedure was followed for each of the 19(19 �1)=2 = 171 pairwise comparisons between runs, forboth the raw sample data and the di�erenced sampledata.The p values for each pairwise comparison are showngraphically in Figures 10{14. These �gures show onehistogram for p values obtained using raw sample data,and another for p values obtained using di�erencedsample data. In all of the histograms, any p value lessthan 0.05 is plotted as zero. Bars of non-zero height onthe histograms therefore represent pairs of runs whichare not signi�cantly di�erent from each other for themeasure in question at the p = 0:05 level.(Note that, in order to emphasize the formation ofvarious clusters of runs in these histograms, the runsin each histogram are arranged along the x and y axesin increasing order according to the mean of their 10sample values. While this emphasizes clusters in anyone histogram, it means that clusters occurring in sim-ilar positions in the histograms of di�erent measures donot necessarily represent the same runs.)The randomization version of the paired-sampledt test has some advantages over other methods ofinvestigating pairwise comparisons (e.g. it is non-parametric), but it has the disadvantage that it is \vir-tually certain to produce some spurious pairwise com-parisons" (Cohen 1995) (p.203). Cohen suggests oneway, not to get around this problem, but at least tohave some idea of the reliability of a particular setof pairwise comparisons (Cohen 1995) (p.204). Theidea is to �rst calculate, at the 0.05 level, how manyruns, on average, each run di�ered from (call this�n0:05). Then calculate a similar �gure at a much morestringent level. As we have 1024 numbers in our dis-

tribution of mean di�erences, the 0.001 level is ap-propriate. Finally, calculate the criterion di�erential,C:D: = �n0:05 � �n0:001. If C:D: is large, this indicatesthat many signi�cant di�erences at the 0.05 level didnot hold up at the 0.001 level. A small C:D: value in-dicates that the experiment di�erentiates runs unequi-vocally, therefore lending more weight to the validityof the results at the 0.05 level. Table 1 shows �n0:05,�n0:001 and C:D: for each measure, and for both rawand di�erenced sample data.Table 1 reveals a number of interesting results. Themost striking is the di�erence in the results of usingraw sample points compared with di�erenced samplepoints.Using raw data, the average number of runs thatany particular run was signi�cantly di�erent to at the0.05 level ranged from 3.89 for Activity (presence) to13.26 for Diversity. However, the criterion di�erentialfor all of these measures is high (ranging from 3.68for Activity (presence) to 12.32 for Program Length).This suggests that the validity of the �gures at the 0.05level are questionable, and the true �gures are probablysomewhat lower than those calculated. Having saidthis, the average number of runs that any particularrun was signi�cantly di�erent to even at the 0.001 levelwas non-zero for the �ve measures suggested by Bedauet al. (ranging from 0.21 for Activity (presence) to 6.32for Diversity).Using di�erenced data, the results have a very dif-ferent look. In only two measures were any runs sig-ni�cantly di�erent from any others even at the 0.05level (0.11 for Activity (concentration) and 0.42 for Di-versity), and both of these vanished at the 0.001 level.In other words, these �gures suggest that, for all ofthese measures, starting o� at any point during any ofthe runs, the amount the measure changed over a givenperiod was not signi�cantly di�erent compared to anyof the other runs.Activity Wave DiagramsWhereas the Activity andMean Activity measures pro-duce a summary �gure for a whole population of geno-types at time t, activity wave diagrams plot the successof every genotype in the population at every stage ofthe run (Bedau & Brown 1997). They are therefore auseful visualization technique for competition betweengenotypes, and the shape of an individual wave canalso suggest the level of adaptive value of the corres-ponding genotype relative to its competitors.The activity wave diagrams for most of the runslooked surprisingly di�erent, although it is hard toquantify these di�erences (the Activity and MeanActivity measures do quantify some aspects of them,



Measure Data Type �n0:05 �n0:001 C:D:Activity (presence) raw 3.89 0.21 3.68di�erenced 0.00 0.00 0.00Mean Activity (presence) raw 12.00 4.53 7.47di�erenced 0.00 0.00 0.00Activity (concentration) raw 8.42 2.11 6.32di�erenced 0.11 0.00 0.11Mean Activity (concentration) raw 10.32 4.11 6.21di�erenced 0.00 0.00 0.00Diversity raw 13.26 6.32 6.95di�erenced 0.42 0.00 0.42Program Length raw 12.32 0.00 12.32di�erenced 0.00 0.00 0.00Replication Period raw 10.21 0.00 10.21di�erenced 0.00 0.00 0.00Table 1: Mean number of runs that each run is signi�cantly di�erent from at the 0.05 level (�n0:05) and 0.001 level (�n0:001),and the criterion di�erential (C:D:). See text for details.
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Figure 10: Activity (concentration): Pairwise compar-isons (p values) between runs. Raw Sample Data (left).Di�erenced Sample Data (right). p values below 0.05 areplotted as zero, so bars of non-zero height indicate pairs ofruns that are not signi�cantly di�erent at the 0.05 level.See text for details.but no single measure captures all of the importantinformation that the diagrams can tell us). Exampleactivity wave diagrams (for runs 17 and 10) are presen-ted in Figure 15.One way in which the activity wave diagrams can bevery useful is in evaluating the e�ectiveness of di�er-ent measures of evolution at highlighting the import-ant adaptive events during a run. In particular, in theruns reported here it was observed that the Activityand Mean Activity measures based purely upon thepresence of genotypes in the population bear little re-semblance to the salient features of the wave diagrams.Indeed, these measures were introduced mainly so thatthey could be applied to fossil data as well as to datafrom arti�cial systems (the concentration data for fossiltaxa being unknown) (Bedau et al. 1997). The meas-
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Figure 11: Mean Activity (concentration): Pairwisecomparisons between runs. See text and caption of Fig-ure 10 for details.
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Figure 12: Diversity: Pairwise comparisons betweenruns. See text and caption of Figure 10 for details.ures based upon the concentrations of genotypes shouldbe better, and the results of these runs indicate thatthis is indeed the case. Activity (concentration) usu-ally seems to give a better re
ection of the wave dia-gram than does Mean Activity (concentration). Thisis possibly because the latter measure is de�ned as
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Figure 13: Program Length: Pairwise comparisonsbetween runs. See text and caption of Figure 10 for de-tails.
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Figure 14: Replication Period: Pairwise comparisonsbetween runs. See text and caption of Figure 10 for details.Activity divided by Diversity, but diversity, by its verynature, does not take account of the concentrations ofdi�erent genotypes, but merely their presence.DiscussionAs discussed earlier in the paper, the three factorsthat are fundamental to the success of genotypes in anevolving population are the longevity, fecundity andcopy-�delity of the individuals. The measures chosento track these factors in the runs reported here wereAge at Death, Replication Period, Program Length,Flaw Rate, Number of Faithful Replications and Num-ber of Unfaithful Replications. Very little change wasobserved in any of these measures except ProgramLength and Replication Period throughout the courseof any of the runs. It therefore appears that, under theset of parameters used in these runs, the programs areonly able to evolve along one of the three axes (fecund-ity) theoretically available to them. Studying some ofthe programs that evolved during the runs suggeststhat most adaptive events involved either making theprogram shorter by removing (what turned out to be)redundant instructions, or by adding energy collectioninstructions to reduce the chance of the program beingculled.For Program Length and Replication Period, signi-

Figure 15: Activity Wave Diagram, Runs 17 (left) and 10(right)�cant di�erences (at the 0.05 level) were observed inthe raw data values between some runs. For thesemeasures, the mean number of runs that each runis signi�cantly di�erent from at this level was calcu-lated as 12.3 for Program Length and 10.2 for Replica-tion Period, but the high criterion di�erential on thesescores suggests that the true value should be some-what lower (looking at Figures 13 and 14, probablysomewhere in the range of 6 to 10).Looking at the derived measures suggested by Be-dau et al. (Activity (presence), Mean Activity (pres-ence), Activity (concentration), Mean Activity (con-centration) and Diversity), signi�cant di�erences werefound between runs which did hold up even at the 0.001level. Again, the true value of each of these di�erencesprobably lay in the range of roughly 6 to 10.These results indicate that each run, on average, per-formed signi�cantly di�erently to between a third anda half of the other runs. One of the main reasons fordoing these experiments was to understand how weshould deal with contingency when conducting furtherexperiments with Cosmos. If we assume that at leastthe �nding that each run is statistically di�erent tomore than a third of the others is a general result,then we can use the following rule of thumb: For eachre-run of a trial with a di�erent seed for the RNG, theprobability of its outcome being statistically equivalent(at the p = 0:05 level) to the original one is, at most,about 23 . Therefore, the number of re-runs that shouldbe conducted to be con�dent (at the 95% level) of atleast seeing one statistically di�erent type of behaviouris n, where ( 23 )n � 0:05, i.e. n � 7:388, or, in round�gures, n � 8. This is the number of re-runs after theoriginal, so, �nally, we can say that any trial should beconducted nine times with di�erent seeds for the RNG.Having said that each run performed signi�cantlydi�erently to at least a third of the other runs, pre-cisely which runs were signi�cantly di�erent dependedupon the particular measure being looked at. Thisemphasizes the fact that one should be clear about ex-actly what measure is being used when talking aboutcomparisons between evolutionary runs.



The fact that no signi�cant di�erences were foundbetween any of the runs for any of the measures whenlooking at di�erenced sample data is of great interest.It suggests that the signi�cant di�erences observed inraw sample data may be caused (at least in part) bythe cumulative magni�cation of initially small di�er-ences as a run proceeds. If this e�ect is controlled for(which was the purpose of using di�erenced data), thebehaviour of the runs in terms of the change in valuesof the measures over a given time period would seem tobe very similar in all of the runs. However, because ofthe cumulative magni�cation of small di�erences, theabsolute outcomes of the runs do di�er signi�cantly insome cases, so contingency does play a big role.Finally, we can ask to what extent these results canbe generalized to other evolutionary systems. Consid-ering biological evolution �rst, it is clear that even justin terms of population size and the length of runs, thesystem is completely trivial. Also, the role of contin-gency may be di�erent in systems which have rich eco-logical interactions (of which Cosmos programs havevery little). It would therefore be unwise to claim thatthese results can tell us much about the role of contin-gency in biological evolution, but they may be relevantin speci�c cases. As for other arti�cial evolutionarysystems, Cosmos is of comparable design, so the res-ults, and the rule of thumb about the number of trialsthat should be run, should be broadly applicable tothese platforms as well. The extent to which ecologicalinteractions a�ect the results may be investigated byrunning similar trials on systems that display strongerinteractions of this kind (such as Tierra).AcknowledgementsThanks to Chris Adami and four anonymous reviewers forhelpful comments on a draft of this paper, and also to MarkBedau and Emile Snyder for supplying software for produ-cing evolutionary activity data from the raw data of a run.One of the authors [TT] is supported �nancially by EPSRCgrant number 95306471. The facilities used for this workwere provided by the University of Edinburgh.Appendix:Non-default parameter valuesancestor=user de�ned number=64 rng seed=[variable]limited run=yes number of timeslices=300000 grid size=40horizontal wrap=yes vertical wrap=yes max cells per process=800x delta=0.025 et value constant=0.025 et value power=1.0max energy tokens per cell=50 apply 
aws=yesmax energy tokens per grid pos=25 mutation period=1000000mutation application period=1 default 
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