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Abstract 
This paper presents a novel application of agent-based 
simulation software to tune real greenhouse infrastructure 
containing flowering seed or vegetable crop plants and their 
insect pollinators. Greenhouses provide controlled 
environments for the growth of high-value crops. As global 
climate and weather become more unpredictable, we are 
becoming more dependent upon technologically sophisticated 
greenhouses for reliable crop production. For crop pollination 
in a greenhouse, although manual or technological alternatives 
have been explored, pollination by bees is still required in many 
crops for the best seed yields and food quality. However, the 
design of greenhouses is driven primarily by the requirements 
of the plants rather than the pollinators. In light of this, we have 
designed simulations to explore improvements to greenhouse 
conditions and layout that benefit the insect pollinators and 
assist them to pollinate the crop. The software consists of an 
agent-based model of insect behaviour that is used to predict 
pollination outcomes under a range of conditions. The best 
parameters discovered in simulation can be used to adjust real 
greenhouse layouts. We present a key test case for our method, 
and discuss future work in which the technique has the potential 
to be applied in a continuous feedback loop providing 
predictions of greenhouse re-configurations that can be made 
by real-time control systems in a modern greenhouse. This is a 
novel approach linking simulation behaviour to real techno-
ecological systems to improve crop and seed yield from 
valuable greenhouse infrastructure. 

Introduction 
Our rapidly increasing human population demands more food, 
and more reliable food production, in a climate that is 
increasingly unpredictable (Olesen and Bindi 2002, Kjøhl et 
al. 2011). Greenhouses globally facilitate high crop yields and 
product quality. These artificial environments facilitate 
efficient water and fertiliser use, and have low environmental 
impact. Hence, we are becoming increasingly dependent on 
large-scale, technological greenhouse facilities for our most 
valuable crops (Oerke and Dehne 2004). 

Within these spaces, bees, especially managed colonies of 
honeybees (Apis mellifera) or bumblebees (Bombus 
terrestris), are key providers of essential pollination services 
for many food and seed crops. Overall, bees contribute an 
estimated $238 billion p.a. to world food production. 
Currently, 34% of all food is dependent on bees, with the 
leading pollinator-dependent crops being vegetables and 
fruits, followed by edible oil crops, stimulants (coffee, cocoa, 

etc.), nuts and spices (Gallai et al. 2009, Kjøhl, Nielsen et al. 
2011). 

Surprisingly, greenhouses are not currently designed to suit 
bee pollinators. Even advanced climate-controlled 
greenhouses are managed primarily for the sake of crops, 
usually ignoring all but the most basic needs and behavioural 
preferences of insect pollinators. Consequently, difficulties 
arising from greenhouse bee pollination are widely reported 
and known to reduce the insects’ ability to pollinate our high-
value crops (Abrol 2012, pp. 353-395). This may result in a 
reduction in yield, shelf-life and quality of food and seed that 
is potentially avoidable. However, bee-plant interactions are 
complex and difficult to predict. It remains an open problem 
as to how we can design infrastructure to facilitate these 
interactions for the mutual benefit of the plants, insects, and 
for the human food producers and consumers dependent on 
successful pollination. 

This paper sets a new agenda for state-of-the-art digitally-
connected greenhouses by placing insect pollination as a key 
component in data-driven horticultural ecosystems. 
Specifically, we propose to design or configure various 
aspects of greenhouses around insect pollinator behaviours 
and preferences, whilst maintaining the requirements for 
healthy, productive plants. 

We tackle this project using techniques developed within the 
fields of Artificial Life and Ecological Modelling. 
Specifically, we use agent-based models to simulate insects in 
specific greenhouse conditions in order to understand, and 
predict, how real bees will respond in real environments to 
real flowering crop plants. We then use the predictions to 
make design decisions for greenhouses that account for insect 
behaviours and preferences, to enable improved food 
production. In this paper, we explain how such methods work 
and provide results for a key test case to illustrate the 
principle. We discuss extensions to our model that would 
facilitate the use of our software as a simulation-in-the-loop 
control system for tuning pollination in greenhouses. 

Background 

Greenhouse layout and control 
In order to produce fertilised seed for sale to commercial 
growers, a greenhouse is often planted with a male-sterile 
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“female” plant incapable of producing viable pollen. The only 
way for these plants to be pollinated then, is for a “male” plant 
to become a pollen donor. Insects, especially managed hives 
of bumblebees and honeybees, are common pollen vectors. 
The greenhouse is planted with male plants from which the 
bees must collect the pollen (from the flower anthers), and 
female plants onto which the bees must carry and deposit the 
pollen (onto the flower stigma). Since only the fertilised 
female plants will produce viable seed and this seed must not 
become contaminated with the seed from the male plants (the 
pollen-bearing line), the male and female plants are 
commonly arranged in long, parallel, single-sex rows 
facilitating reliable mass removal of the pollen-bearing plants 
prior to seed harvest. 

Space between plant beds facilitates human and machine 
movement to maintain the crop, for instance to check plant 
health, remove weeds, maintain water and nutrient supplies. 

Conditions in modern industrial greenhouses may be climate-
controlled for humidity, temperature and lighting to minimise 
the likelihood of pests and diseases such as insects and fungi, 
whilst providing suitable conditions for plant growth, crop 
development or fruit and vegetable ripening. Simple 
greenhouses may have little scope for dynamic control but 
must nevertheless take heed of these basic requirements for 
successful horticulture and food production. These conditions 
are not necessarily suited to the insects, despite the 
importance of the role they play in food and seed production. 
For instance, plant rows may be spaced beyond the limited 
visual range of foraging bees (Dyer et al. 2008) making it 
difficult for them to act reliably as pollen vectors – they might 
seldom cross from a row of male plants to a row of females if 
the space isn’t well planned. Simply put, greenhouse-bound 
bees do not always behave as we would like because 
greenhouses are currently designed for different criteria. 

Pollination and insects. 
Ideally, we want bees to be well spread throughout a crop of 
flowering greenhouse plants, and we want them to be visiting 
and manipulating flowers in the way required for successful 
pollination. In cases, such as for tomato crops, where self-
pollination is required, we want bumblebees to visit blooming 
flowers throughout the greenhouse with little need to worry 
about the visitation order. But where male and female plant 
organs appear on separate plants and cross-pollination is 
required, we need bees to visit male flowers to collect pollen 
on their bodies, and then to visit female flowers to brush it off 
to facilitate successful pollination. If the order of visitation 
isn’t correct, such that there is no pollen on a bee’s body when 
it visits a female plant, then cross-pollination cannot occur. In 
light of this need, for seed and food production requiring 
cross-pollination, male/female planting ratios and layouts 
have been explored and trialled over many years (e.g. see 
(Williams and Free 1974) on onion seed production). Industry 
planting replicates standard layouts to ensure sufficient pollen 
distribution to the crop that accounts for the specific 
requirements of each plant, its pollen production and 
distribution requirements. E.g., see the many requirements of 
crops surveyed throughout (Delaplane and Mayer 2000). 
Arrangements must also account for the fact that, in hybrid 

seed production (and in fruit orchards), it is the female plants 
(or “main variety”) receiving the pollen that produce the 
fertilised seed or develops the fruit that generates revenue. 
E.g., see (Abrol 2012, p.241) on orchard planting patterns. 
Growers therefore want sufficient male pollen-bearing plants 
in their farms, but they must offset this space requirement 
against the need to maximise the number of revenue-
generating female plants. 

Where suitable insect pollinators are unavailable, labour-
intensive manual or expensive technological alternatives have 
been applied. To give an indication of the extent to which 
growers have gone in search of bee replacements, tomato 
pollination attempts include: hand pollination, emasculation, 
vibration of trellis wires, acoustically forced vibration, air 
blowers, pulsating air jets, sound waves, air cylinder 
vibration, plant hormone application, manual pollination with 
an electric vibrator or “electric bee” (Bell et al. 2006). Bees, 
however, have coevolved over millions of years with 
flowering plants and provide significant increases in crop 
yield, product quality and shelf life in some crops (Klatt et al. 
2014). Unfortunately, global bee populations are diminishing 
due to effects including pesticide use, industrial crop 
monocultures, Varroa destructor mites and natural habitat loss 
(Plant-Health-Australia 2018). Managed hives are therefore 
increasingly valuable to greenhouse growers and it is 
important to utilise their services effectively. 

It is difficult to maintain bees as fully functional pollinators 
within the confines of a greenhouse; especially when the 
workspace has not accounted for how bees employ sensory 
capabilities to find flowers, orientate themselves in the space 
or navigate to and from their hive. From the bees’ perceptual 
experience, current greenhouses may be likened to a poorly 
designed supermarket in which they forage. Imagine what it 
would be like to shop in a human supermarket that was 
designed solely for the wellbeing of the products without 
attending to the needs of the customers with regard to climate, 
navigational aids and easily identifiable food labelling. If all 
supermarket food was arranged in identical unlabelled aisles, 
on identical unlabelled shelves, in identical unlabelled boxes, 
and the space was hot, poorly lit and didn't stock diverse 
supplies, shopping would be an even more stressful activity. 
Good visual design suited to the customers’ needs is thus a 
key to success in a modern economy (Clement et al. 2013). 
Likewise, bees in poorly designed greenhouses easily can, and 
do, become confused, stressed or lost; reducing food 
production efficiency (Morandin et al. 2002). Stressed or 
confused bees may attempt to leave the greenhouse, heading 
for its upper corners and buzzing there until they die. Or, they 
may stay in the hive and refuse to forage, or they may forage 
but then return to the wrong hive. Either way, disorientation 
isn’t good for bees or for food production (Birmingham and 
Winston 2004). 

Agent-based models of insect behaviour. 
Bees are complex social organisms with sophisticated 
behavioural and learning mechanisms and advanced 
perceptual systems (Dyer et al. 2011). There is no singular, 
nor simple, solution to managing their interaction within the 



complex greenhouse environment. Prediction and 
management of their behaviour demands complex tools. 

The best way to understand insect behaviour under specific 
environmental conditions is, without doubt, to observe it. 
Hence, bee behaviour has been observed by naturalists since 
at least Aristotle (in Historia Animalum, c.340 B.C.E), yet, 
there remains much to discover. Making observations of 
insect-plant interactions under diverse conditions is 
prohibitively expensive and labour-intensive. In the case of 
proposed or predicted environmental change, it may even be 
impossible to conduct experiments under relevant conditions – 
they haven’t happened yet! How then do we explore current 
and future greenhouse design to cater for bees? Ideally, for a 
specific greenhouse with a specific crop and during a specific 
part of the flowering season, we would like to know which 
flowers bees have visited and pollinated, which areas of the 
greenhouse confuse bees, which areas they avoid, and where 
they congregate. We need to understand the drivers for these 
insect behaviours to devise mechanisms that encourage bee 
circulation and enhance pollination. 

The combination of data collection on real insects/flowers and 
computer simulations has the potential to provide a powerful 
dual approach to understand bee’s pollination performance. 
The process involves using field observations to parameterise 
and validate computer models of insect behaviour that are 
then used to understand the implications of the observations 
under relevant environmental conditions. For this, we have 
found agent-based models (ABMs) to be suitable, as 
explained in detail below. By running thousands of simulated 
interventions or variations to greenhouse design, and 
assessing their pollination outcomes, we can predict which 
interventions to test in the real world to improve food and 
seed production. Ideally, the test results are then used 
iteratively to improve simulation parameters and algorithms 
before repeating the cycle. 

ABMs allow us to unravel complexity and predict large-scale 
dynamic behaviours emergent from many individual 
interactions. They have been increasingly used for ecological 
applications since the late 1990s (Grimm 1999). Since 
insect/plant interactions form just such a complex ecological 
system, ABMs are among the suitable Artificial Life 
techniques for our case (Dornhaus et al. 2006). Millions of 
bee-agents must be simulated in detail as they navigate and 
forage among individual virtual flowering plants that 
correspond to specific real greenhouses, or alternatives that 
may improve efficiency. The technique has already been 
successfully applied to this context. For example, ABMs have 
been used to show that the benefits of recruitment by 
honeybees depends on environmental flower density 
(Dornhaus, Klügl et al. 2006). ABMs have successfully 
modelled bee-flower interactions, notably for colour 
discrimination. These have shown the importance of 
pollinator diversity for success of colonies in complex 
environments (Dyer et al. 2014), and why flowers evolved 
colour signals in Australia (Bukovac et al. 2017). ABMs have 
also revealed different efficiencies of bumblebees and 
honeybees that forage in environments of variable floral target 
and non-target density ratios (Bukovac et al. 2013). 

Method 
We have developed a number of ABMs of bee foraging 
behaviour (Dyer et al. 2012, Bukovac, Dorin et al. 2013, 
Dyer, Dorin et al. 2014, Bukovac, Dorin et al. 2017) that have 
informed the design of the current experiment. Here our scope 
is to summarise the relevant details. The design rationale and 
methods for validating our models of insect behaviour are 
provided in the cited articles. Short explanations of the 
algorithms and essential parameters are provided below for 
reference. 

Table 1. Main simulation parameters. 
ENVIRONMENT  
Modelled grid cell size 0.35 × 0.35m 
Colony size 60 bees 
VIRTUAL-BEES  
Flower presence detection 
accuracy (visual range) 

100% from neighbour cell or 
cell shared with a flower 

Flower scent mark 
recognition accuracy 

100% from neighbour cell or 
cell shared with a flower 

Storage capacity  Infinite 
Scent mark persistence  Infinite 
Flower visit  3 time steps 
Complete field of view scan 1 time step 
Movement in Moore 
neighbourhood 

1 time step 

Carried pollen viability time 25 time steps 
SIMULATION  
Duration 500 time steps 
Number of replications 100 per test layout 
 
The case-study we describe involves establishing a simulation 
matching one particular industrial greenhouse layout to which 
we have previously had access. However, it is not special in 
any regard. Alternative arrangements might just as well have 
been modelled. As noted above, different crops have different 
pollination requirements and industry has therefore settled on 
standards based on observation for each crop (Delaplane and 
Mayer 2000). Our model is generic and employs plant spacing 
and bed configuration parameters for a simple trial. To 
demonstrate the utility of our method, our goal is to illustrate 
by test case the generation of a planting arrangement that 
maximises pollination in the presence of a given pollinator 
species whose foraging behaviour is explicitly modelled in 
our ABM. The factor under observation is the absolute 
number of female plants successfully pollinated after a fixed 
time interval within the space and layout limitations imposed 
by greenhouse area. Our hypothesis is that the ABM will 
enable us to establish the relative effectiveness of different 
planting arrangements for a two-row per bed greenhouse 
being bee pollinated. We don’t specify in advance the ratio of 
male to female rows/plants in the greenhouse (this is partly 
what our simulation explores), only total row/plant count. 
 
As explained below, the honeybees’ limited visual range 
causes them to tend to forage along plant beds, crossing only 
occasionally between adjacent beds. Hence, we expect the 
best planting arrangement to contain males and females 
together within forager visual range – the best bed layout 
ought to consist of one male and one female plant row. This, 
in theory, positions all females as near as possible to a male 
plant and should maximize pollination. However, this is not 



necessarily the best arrangement for the greenhouse overall, 
when we account for the complex foraging behaviour of the 
pollinators. So, a good planting solution isn’t necessarily the 
“obvious” case with all beds consisting of male/female rows – 
if it is possible to have fewer male rows in the greenhouse 
than one per bed, whilst pollen can still be successfully 
distributed to the females, then the space freed up by having 
fewer males can be filled with valuable yield producing, 
pollinated, female plants. Our simulations assist to unravel the 
complexity of this situation. 

Virtual greenhouse simulation overview. 
Our simulated greenhouse layout consists of four beds of two 
plant rows each (fig. 1). Plant rows may be either entirely 
male pollen-donors, or entirely female plants requiring 
pollination. The ABM is used to establish the ideal 
arrangement of male and female rows within beds to 
maximise pollination after a fixed time interval (500 time 
steps per run, a value chosen by observation to ensure all 
flowers are visited). The greenhouse is divided into grid cells 
labelled as either empty space, or occupied by a single male or 
female plant. Grid cells represent 35cm2 making it possible for 
a bee to view the centre of one cell from the centre of its 
neighbours to correspond to the visual range of a honey-bee. 
The greenhouse is 72x18 cells, rows 60 cells long, inter-
bed/wall spacing is 2 cells. 

 
Figure 1. Simulated greenhouse visualisation. Red: un-
pollinated female flowers, orange: pollinated females, blue: 
males. Black circles: bees (Small pale, yellow circles within 
bees indicate carried pollen. Pale yellow fades to white as 
pollen is lost. Bees return to black upon losing all pollen). 

Virtual bees and virtual plants. 
Simulated plants support a single virtual flower to represent 
the pollination status of the crop at that location. Male flowers 
can be pollen donors; they commence the simulation with a 
single pollen grain available for collection (rationale below). 
Female plants can be pollen recipients; they start the 
simulation un-pollinated and are pollinated when a grain of 
pollen is deposited on them by a virtual bee. 

Real bee colony sizes vary from a few to many tens of 
thousands depending on species, but there is variation even 
within species (e.g. (Michener 1964)). We modelled a colony 
of 60 foragers initially placed at random on the grid but, in the 
virtual world, could just as well have chosen any number and 
obtained the same results by adjusting simulation run length. 
For this experiment, in order to control the number of tests 
required in our brute force approach, we do not model hive 
location; a worthwhile extension that has long been explored 
in the field (Free 1960). We do model scent-marking of 

flowers by bees. Honeybees mark flowers with a pheromone 
while harvesting to signal to others that the flower’s nutrition 
has been depleted (Giurfa and Núñez 1992). In our model, 
virtual bees (v-bees) mark every visited flower with a scent 
that persists for the remainder of that simulation run. V-bees 
can detect this mark on any visible flower and will reject 
marked flowers for landing. Consequently, each flower is 
visited only once – virtual male flowers therefore only need to 
carry a single grain of pollen, and females need only receive 
one grain for pollination. Scent marks are the only means by 
which v-bees interact with each other. 

Real-world time is not explicitly simulated, so a single time 
step does not directly imply a particular real timespan. Crop 
pollination occurs over days and weeks, but we need only to 
assess how pollen disperses in a short period. Consequently, 
we limit the simulation outcome to the worst-case scenario; if 
each plant were visited only once, which planting arrangement 
results in the best pollination? A persistent scent mark allows 
us to gain the desired pollen distribution snapshot. 

V-bee decision-making is governed by the algorithm 
illustrated (fig. 2) and its parameters (tab. 1). Each v-bee flight 
is a sequence of randomized straight-line movements; a line’s 
orientation is selected from a uniform random distribution, its 
length is drawn from a Cauchy distribution as honeybee 
searching is consistent with Lévy flights, and their flight path 
lengths follow a Lévy-stable distribution / Cauchy distribution 
(Reynolds and Rhodes 2009). In one simulation time-step, a 
v-bee moves in its Moore neighbourhood (the 8 cells 
surrounding its current location). If it can see an unvisited 
flower it moves towards it. In the absence of a target, a v-bee 
acquires a random angle, and random path length drawn from 
the Cauchy distribution as just noted, calculates the 
corresponding destination grid cell, and moves one grid step 
along the rasterized path that approximates a straight line to 
the destination. In subsequent turns, the v-bee continues 
towards the destination in this way, only stopping if it sees an 
unvisited flower, runs into the greenhouse wall, or reaches its 
destination cell. At the destination, if it finds no unvisited 
flowers, a v-bee repeats the movement process. Hence, v-bee 
movement is guided by both simulated vision and biologically 
plausible random movements. 

Pollen carryover is the amount of time any pollen deposited 
on a bee’s body during a flower visit remains on its body 
available for pollinating a flower (Thomson and Plowright 
1980). Modelling the mechanical complexity of pollination is 
beyond the scope of this case study. Our experimental goal 
lies only in establishing relative differences in pollination 
extent between planting arrangements. So, as long as our 
carryover value is plausible, it won’t impact relative 
differences between plant arrangements – this was confirmed 
by testing. We model pollen carryover as a simple timer 
whereby after 25 time steps pollen collected from a flower on 
the body of a v-bee is lost. In the real world, this may be due 
to insect grooming, loss during flight, or whilst moving 
through flower and plant components. 
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Figure 2. Virtual bee decision-making algorithm. 

Figure 3. Mean total flowers pollinated out of 480 at t=500 (N=100 runs) for each plant row 
arrangement. Row configurations sorted in order of increasing pollination count. For 
legibility, only sample planting arrangements are labelled, although all data is plotted. Red 
arrow marks sample industrial greenhouse planting arrangement encountered in practice. 



Results and Discussion. 
The ABM results are illustrated in fig. 3. The x-axis shows 
planting arrangements sorted in increasing order of numbers 
of pollinated female plants. The y-axis marks the number (out 
of a possible maximum total of 480 females – the case with all 
rows fully planted with female plants) that were pollinated. 
For legibility, only some sample planting arrangements are 
explicitly labelled, although all data is plotted on the bar 
graph. 

As can be seen, the success of a greenhouse arrangement is 
proportional to the number of beds with dual-sex male/female 
(MF) row planting. The sets of arrangements with 1, 2, 3 and 
4 MF beds are marked for clarity on the figure and create 
visibly stepped performance increases. All runs ran to 
saturation by simulation termination at t=500 (i.e. all flowers 
were visited, but not all females were necessarily pollinated). 
Planting beds with neighbouring male and female plants in a 
1:1 ratio maximized the total number of pollinated females in 
the greenhouse. We noted above that this was the intuitive 
best arrangement for individual beds, but within the 
limitations of our simulation, this also appears to be the best 
layout for the entire greenhouse. For the reasons noted above, 
this isn’t necessarily what we would expect. So, why isn’t it 
more effective to reduce the number of males and replace 
them with more yield-producing females? Our simulation 
seems to indicate that the bees’ inability to see between beds 
severely impacts their ability to carry pollen from one bed to 
another. Hence, each bed requires its own source of pollen – a 
row of males in each bed – to facilitate effective pollination. 
In a real greenhouse, multi-day foraging by bees may 
overcome this deficit to an extent. However, within the 
limitations of our model, we suggest that a better arrangement 
for all beds for increased overall yield is MF planting. 

As noted, industry planting arrangements vary and there may 
be disagreement about best-practice (e.g. (Williams and Free 
1974) and references within). Anecdotally, the reasons for this 
may be obscure although they may simply be related to lack 
of information, the variability of crop growing conditions, 
variation in the crops themselves, and in their pollinators. 
Crop pollination is a very complex interaction. In many cases, 
farmers utilize the services of several sets of fresh hives, as 
well as many days or weeks of repeated foraging, for 
pollination. Their aim is to allow time for satisfactory 
pollination and realise a net increase in crop yield. The 
number of bees and timing required then becomes another 
factor of relevance for growers (Abrol 2012, p.243) and 
(Delaplane and Mayer 2000). Likewise, the spacing between 
plants has long been considered important (Crane and Mather 
1943). 

Trivially, our model can be adjusted to accommodate multi-
day pollination by increasing the number of virtual days over 
which pollination runs, removing scent marks after an 
appropriate decay time, increasing the number of pollen grains 
collected, carried and deposited by bees, and altering the 
number of grains that must be deposited on a plant for 
pollination. However, this extension has not been explored in 
the current paper. The simple version of the model presented 
here nevertheless demonstrates the utility of our ABM-based 
approach for choosing the plant layout within the limitations 

imposed by the pre-determined greenhouse configuration 
under study. 

Future work 
The potential applications of this ABM-based approach are 
extensive. So, our paper now explores opportunities for the 
future in which complex greenhouse infrastructure is 
dynamically adjusted to account for insect pollinators. 

The control of simple systems such as for heating a small 
home requires only a simple device – a thermostat that turns 
on or off a heater may suffice. Often, the relationship between 
the desired outcome, a particular house ambient temperature 
setting, and the required alteration of heater parameters is 
obvious. At the other extreme, the requirements for control 
systems of commercial greenhouses can be extremely 
complex. Such infrastructure ought to account for the dynamic 
requirements of developing plants, ripening fruit/vegetables, 
pollinating insects and human growers, whilst keeping at bay 
unwanted insect pests and fungi, and whilst the structure 
remains exposed to changes in the external environment. To 
tackle this, we propose a general framework for addressing 
the complexity of the issue: simulation-determined layout and 
control for data-driven greenhouses. This infrastructure we 
term a techno-ecological system (TES). 

A modern greenhouse equipped with sensors coupled to 
automated control systems encompasses strongly coupled 
interactions between the organisms it contains and the 
technological infrastructure. A basic greenhouse might have 
control systems akin to those of a simple house that adjust the 
temperature and humidity inside based on sensor data. What is 
missing however is any technique for environmental control 
that suits the dynamic behavioural repertoire of insect 
pollinators. The complexity and dynamics of insect/plant 
interactions positions this task beyond the capability of 
directly coupled sensors and actuators. As shown above, 
simulations can inform us in making decisions on greenhouse 
layout that assist pollination by bees. But the system described 
above is “set and forget” in the sense that once a greenhouse 
is configured it must be (more or less) left alone in this regard. 
An alternative is to place the simulation into a feedback loop 
as part of greenhouse control. The simulate-perturb-sense 
cycle is necessary because the needs of colonies of managed 
bees are dynamic. They change over the course of a day, over 
the course of a season, and between seasons. Greenhouses, 
plants and bees are not “set and forget” systems for which a 
single set of observations is effective in dictating ideal 
conditions. Hence, a real-time method to tune greenhouse 
conditions in response to the complex dynamical interaction 
of flowering crops and bees is desirable. The difficult process 
of control system design for complex models or physical 
robots provides a potential source of inspiration for the design 
of complex greenhouse controllers. For example, Terzopoulos 
et al. (1994) present a method applied fully in-simulation to 
allow virtual fish to learn effective use of their own actuators. 
Sims’ use of evolutionary computation to evolve “virtual 
(blocky) creature” body forms and controllers in simulation is 
well known also (Sims 1994). Lipson extended the application 
of the principle by evolving robot forms and controllers for 



3D printing, thereby bringing the results of the simulated 
world into physical form (Lipson and Pollack 2000). 

We propose, however, to adopt a means of dynamic control 
similar to that of Bongard et al. (2006) who created robots that 
incorporate real-world performance feedback into their 
control systems. Firstly, as described above, we take data 
from the behaviour of a real, complex techno-ecological 
system into a simulation to explore the impact of perturbing 
that system. Secondly, we suggest in the future to introduce an 
iterative feedback loop that applies the proposed perturbations 
to the real world and monitors the results, before once more 
feeding newly sensed data back into the simulation to 
continuously improve the model, and to generate new 
perturbations responding to the dynamic state of the physical 
system. 

A variety of sensor data would need to be collected on 
environmental conditions in the greenhouse to achieve our 
goal. However, sensors, sensor-networks and multi-spectral 
imaging have been used in precision agriculture to monitor the 
environment, lighting and plant condition, and to adjust 
greenhouse conditions such as temperature and humidity, 
drip-irrigation and nutrients directly in response to crop needs 
since 2003 (Ruiz-Garcia et al. 2009) so the inclusion of such 
technology in greenhouses isn’t rare. Sensor data on insect 
speed, direction of travel and location, and on floral visits and 
idle-time of bees throughout the flowering crops is also 
required. Recently “bees with backpacks” have become a 
viable option with the potential to be applied to this end 
(Engelke et al. 2016). 

Data collected on the greenhouse environment and its insect 
occupants can be fed into an ABM of bee greenhouse activity 
as the “current system state”. From this, a set of alternative 
greenhouse configurations would be generated to be explored, 
for example, by an Evolutionary Algorithm (EA). The best 
configuration the EA generates is the one resulting in even 
and robust pollination. Each simulation run within the EA is 
an attempt to predict the ideal “future state” of the greenhouse 
and the conditions that lead to it. Hence, the parameters of the 
best run must be fed back into the physical greenhouse 
controllers to attempt to drive the real situation towards this 
state. The simulate-perturb-sense cycle repeats as long as the 
greenhouse requires pollination and at a rate that must be 
governed by the systems under control, since, not all 
infrastructure can, or should, be updated rapidly – the need of 
bees, crops and (human) growers for different types of 
environmental stability must be taken into account. 

Each member of the evolving population in the EA is then an 
ABM of bees pollinating flowers laid out in accordance with 
the greenhouse configuration and parameters. These test cases 
can be generated based on standard EA mutation and 
crossover operators. Bee behavioural parameters are fixed in 
accordance with existing tested and validated models whilst 
greenhouse parameters are varied as part of the EA digital 
genome. Some samples for the kinds of parameters to be 
included are already given above as the basic elements of our 
ABMs above (Tab. 1). 

Conclusion. 
The test case we have explored, how to plant male and female 
plants for cross-pollination in a pre-determined bed set up, is 
an important consideration that has long been an essential 
aspect of greenhouse layout. Our ABM takes account of 
essential honeybee foraging behaviours including Lévy 
flights, scent marking, and limited vision, to test possible 
planting configurations exhaustively. It settles on an 
arrangement with dual MF rows in each bed as most effective 
for pollination – the more beds like this, the more female 
plants were successfully pollinated in the model. Whilst some 
of the cited literature reports testing on a variety of planting 
arrangements, much more fieldwork would be required to 
ascertain the accuracy of the model’s prediction for different 
crops and different bee species – the simulation however gives 
a starting point that matches a common setup found in the 
literature. 

We also present a proposal for future research where models 
like ours might be employed as part of a continuous feedback 
loop to assist in greenhouse control. Such simulation-in-the-
loop control is, potentially, a way to monitor and respond to 
the complex dynamics of plant-pollinator interactions under 
the variable environment of the greenhouse. This seems to be 
a likely way to think beyond simple reactive control systems 
in order to govern the performance of complex techno-
ecological systems for the benefit of human food production. 
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