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Introduction

A central goal of the field of artificial life is to build evolv-
ing systems that capture interesting dynamics of natural
systems, producing evolutionary outcomes such as sophis-
ticated navigation behaviors, novel cooperative strategies,
complex ecosystems, or major evolutionary transitions, to
name but a few. Such “open-ended” systems are sought after
for a number of reasons: 1) For artificial life researchers, the
presence of dynamics that are seen in biology but not artifi-
cial life raises the possibility that there is some fundamen-
tal and as-of-yet unidentified quality that artificial life sys-
tems are missing (Korb and Dorin, 2011). 2) For biologists,
access to systems exhibiting complex and nuanced evolu-
tionary processes allows rapid experimentation and facili-
tates understanding them on a mechanistic level (Tenaillon
et al., 2016). 3) For evolutionary computation researchers,
insights from open-ended evolutionary systems have the po-
tential to expand the classes of applied engineering problems
that we are able to solve with evolutionary algorithms (Hara
and Nagao, 1999; Potter and Jong, 2000). Biological evolu-
tion is the only process known to have produced general in-
telligence; replicating this process would provide incredible
insights into our own origins, as well as allowing us to har-
ness these dynamics to spur breakthroughs in artificial intel-
ligence. While various artificial life systems have recreated
individual dynamics – such as the evolution of complexity,
cooperation, and competition (Lenski et al., 2003; Goldsby
et al., 2012; Zaman et al., 2011) – these accomplishments
have been in highly controlled circumstances. The overar-
ching goal of open-ended evolution research is to create a
system where all of these dynamics can emerge more organ-
ically, as in the biosphere.

Despite general agreement on open-ended evolution be-
ing an important goal in artificial life, the field has yet to
come to a consensus on how to define whether systems are
making progress towards achieving this goal. A number of
dynamics have been proposed as being possibly necessary
for open-ended evolution, most notably the continuous pro-
duction of novelty (Lehman and Stanley, 2011) (also dis-
cussed by Wolfgang Banzhaf, among others, in (Taylor et

Figure 1: Relationships between the metrics. Originally
published in (Dolson et al., 2015).

al., in press)), continuous increase in diversity (Bedau and
Bahm, 1994), continuous increase in complexity (Lenski
et al., 2003), and shifts in individuality such as those of-
ten associated with major transitions in evolution (Smith and
Szathmary, 1997). We argue that all of these dynamics are
important pieces of the open-ended evolution puzzle. In ad-
dition, we have previously suggested that there is a fifth nec-
essary and even simpler dynamic: continuous change in the
population (Dolson et al., 2015).

These five properties of a system fit into a hierarchy, as
shown in Figure 1. For novelty to exist, there must be some
degree of change in a population. While this is trivially true,
many evolutionary algorithms suffer from premature conver-
gence, which is essentially the absence of change, so it re-
mains an important prerequisite to define and explicitly ad-
dress. Similarly, complexity and diversity can only increase
indefinitely if novel members of the population continue to



be generated. Finally, transitions in individuality typically
involve multiple organisms coming together into a single in-
dividual, requiring an increase in complexity and a diversity
to build from. All of these dynamics capture different sub-
sets of interesting behavior that an evolving system might
have and we propose they are all necessary for a system to
demonstrate open-ended evolution.

To draw conclusions about what factors of a system pro-
mote or inhibit these dynamics, it is critical to first de-
velop a common suite of metrics that are applicable across
a wide variety of systems. Some progress has been made
toward this end with evolutionary activity statistics (Bedau
et al., 1998; Channon, 2001). Evolutionary activity statis-
tics focus on “components” representing the meaningful in-
dividual pieces of a system, which the authors admit will
need to be defined for each system as appropriate. For in-
stance, in the fossil record, species were used as compo-
nents. Once these components are decided upon, the diver-
sity and amount of adaptive evolutionary activity of compo-
nents in a given time step are used to determine into which
of three classes of evolution the system falls. These classes
of evolutionary activity (none, bounded, unbounded) follow
logically from whether diversity and novel evolutionary ac-
tivity per component is bounded or unbounded. However,
to filter out changes that do not represent adaptive evolu-
tionary activity, a neutral “shadow” control with no selec-
tive pressure must be run for comparison. While using a
shadow population as a null model is quite clever, creating
this control treatment can make implementing evolutionary
statistics difficult in complex systems. Moreover, the need
to select an appropriate component can make results chal-
lenging to generalize across systems. Lastly, evolutionary
activity statistics may not be able to differentiate dynamics
in which a subset of the population is gaining new and in-
teresting traits from less interesting dynamics in which that
subset is merely under stabilizing selection.

In this paper, we extend the core ideas behind evolution-
ary activity statistics. We propose to quantify the idea of
open-ended evolution with a suite of four necessary (but not
always sufficient) metrics that attempt to balance generaliz-
ability across systems with the ability to capture the ideas
of the first four dynamics previously discussed: change,
novelty, complexity, and ecological interactions. The nov-
elty and ecological metrics track the same dynamics as new
components and diversity in evolutionary activity statistics.
Complexity provides a direct measure how much informa-
tion is stored in the genome, and is likely to indicated
whether any part of the system is gaining interesting adap-
tations. We propose an alternative technique for isolating
adaptive evolutionary activity, which we hope will be more
widely applicable (see Persistent Lineages below). Addi-
tionally, we propose a technique for selecting meaningful
components that will work for any system in which genomes
are composed of elements that collectively determine fitness

(see Informative Sites). We present our results when apply-
ing these four metrics to an NK system. The fifth metric,
transition potential, has proven more difficult to quantify in
an intuitive and computationally tractable manner and we
are reserving it for future study.

Experimental System

To begin a systematic examination of our metrics, we used
a simple NK model (Kauffman and Levin, 1987). An NK
model uses two parameters, N and K, to randomly generate
a fitness landscape. N specifies the number of sites in the
genome, each of which is a 0 or a 1. The fitness landscape
specifies the effect of a given value at a given site on the
fitness of the bit-string organism. This fitness effect depends
on the values at the K subsequent adjacent sites. As such,
K tunes the ruggedness of the landscape; low values of K
produce smooth landscapes with few peaks, whereas high
values produce landscapes with many peaks. We chose to
use an NK model because they are a well-understood system
for studying general questions about evolutionary dynamics.

Experimental Treatments

Our basic treatment used N = 20 (i.e., 20 bits in an in-
dividual) and K = 3 (the fitness contribution of each bit
was influenced by three other bits). We used a population
size of 200 and a mutation rate of 3 sites per birth (three
bits were randomized in each birth, so there is a 1/8 proba-
bility of all three retaining their original values), with tour-
nament selection and a tournament size of 15. On top of
this basic treatment, we performed eight experimental treat-
ments: High K tests the effect of a highly rugged landscape
(K=10) where fitness is effectively randomized whenever a
mutation occurs. High N tests the effect of longer bit-string
genomes (N=100), allowing for a higher potential complex-
ity. Low Mut and High Mut test the effects of very low and
very high mutations rates (1 bit and 6 bit randomizations per
birth, respectively); we expect the mutation rate to be impor-
tant for finding new areas of the fitness landscape and thus
our novelty metric. Small Pop and Large Pop vary the pop-
ulation size (to 20 and 1000 respectively); in small popula-
tions we expect more drift in the population, allowing more
change, while in a large population we expect stronger se-
lection and consequently that a higher percentage of changes
along the line of descent are beneficial. Finally, we included
two special treatments: in Changing Environments, the fit-
ness function was toggled every 500 generations, allowing
us to see the effect of changing selective pressures where the
populations couldn’t stay on a single peak. In Fitness Shar-
ing organisms that were too similar to each other detracted
from each others fitness, creating a pressure to explore mul-
tiple portions of the landscape at the same time and, ideally,
maintain a high diversity (Goldberg and Richardson, 1987).



Persistent Lineages
At any given point in time, the population will contain some
maladapted genomes that recently arose via mutation. These
genotypes will quickly be purged from the population via
natural selection and will add noise to our metrics. To de-
crease this noise, we must filter out such genomes. We ac-
complish this by looking backwards in time to see which or-
ganisms were the progenitors of lineages that persisted for a
substantial number of generations. We mark each organism
with a lineage number at a given time point A, as demon-
strated in Figure 2 (where color indicates lineage number).
The lineage numbers are passed on to offspring throughout
the time interval (50 generations in our experiments). At
time point A+50, we determine which genomes from the
population at A have descendants at A+50. At this point,
those genomes are considered persistent; in the example in
Figure 2 the green and blue lineages are considered persis-
tent at time point A+50. We then compare the green and
blue genomes from time point A to the genomes that were
persistent previously, either from time point A-50 or from
all previous time points, depending on the metric; in the ex-
ample we would compare to the purple genome at time point
A-50. This filtering leads to a delay in counting a genome in
a metric until 50 generations later, but enables us to avoid an
apparent increase in metrics due to drift via mutation. For
example, the red, orange, and blue genomes from time point
A-50 would never be considered in our metrics because their
lineages do not persist to time point A.

Informative Sites
While a genome may have descendants in 50 generations,
this persistent genome may not be phenotypically different
than another persistent genome in the population. To ensure
we are not counting phenotypically identical genomes sep-
arately, we determine which sites in the genome contain in-
formation about the environment. In an NK bit-string model,
the only information that an organism can have about its en-
vironment is whether it is better to have a 1 or a 0 at each
site. Thus, informative sites are those for which flipping
the corresponding bit would result in a fitness decrease. In
calculating all of the following metrics, we first reduce the
genome to its informative sites.

This approach could easily be extended to any system in
which the genome is made up of a sequence of elements that
collectively determine fitness. Whether or not a genomic po-
sition is informative can be approximated by measuring the
overall fitness effect of changing it to a null alternative that is
known to not contribute information. A null version of the
element is simply a special element that does nothing but
prevents the subsequent elements from shifting positions. A
more accurate technique would examine the fitness effect of
substituting all possible alternative elements and calculating
the potential entropy at that site; when null substitutions are
not possible, this technique is an effective method. A caveat

Figure 2: An illustrative example of how we filter
genomes for persistent lineages. At time point A, the pur-
ple lineage has proven to be persistent and therefore the orig-
inal genome from A-50 will be considered meaningful. Sim-
ilarly, the green and blue lineages persist to time point A+50
and so the original green and blue genomes will be consid-
ered meaningful as they were at time point A.

to this technique is that genomes that achieve a given result
in an excessively fragile manner may appear more complex
than more robustly built genomes. To mitigate this issue, the
combined fitness effect of eliminating multiple genome el-
ements at once can be measured. Fortunately, this is not a
risk in an NK model.

Metrics
Change Metric
Our first metric focuses on whether the genetic makeup of
the population is changing. This metric should always be
above zero unless the population has converged and no ben-
eficial variation is being introduced. We use our method
of filtering genomes (explained previously) to ensure that
we only record a genome as new compared to the previ-
ous time point if its lineage has persisted for one full time
point. For this comparison, we first find the genomes from
persistent lineages from time point A by determining which
genomes have descendants in time point A + 50. In the ex-
ample shown in Figure 2, this would be the genomes at the
root of the green and blue lineages. We then compare these
genomes to those found to have been from persistent lin-
eages in time point A-50 because they have descendants in
time point A, purple in Figure 2. In this way, we create a



sliding window to observe change in the population.

Novelty Metric

The novelty metric measures how many genomes have
evolved in the population that have never been seen pre-
viously in the experiment. For this metric we again filter
out genomes that do not have descendants in the next time
point, enabling us to focus on meaningful novelty. To mea-
sure novelty, we simply count how many genomes from per-
sistent lineages (genomes that existed in time point A and
have descendants in time point A+50) have never been in a
previous time points persistent genome pool. It is possible
with this metric for a genome to evolve, but not persist, and
therefore not be recorded in the permanent history, but then
evolve and persist at a later point and be counted as novel.
Once a genome has been counted as novel, however, it is
part of the permanent history and will never be counted in
the novelty metric again. Thus, while a genome could be
delayed in being counted as novel, or not counted if it never
persists, it will not be counted twice.

Complexity Metric

The complexity metric measures the maximum complexity
(informative sites) of any organism found in the entire pop-
ulation. In the case of the NK landscapes, this is simply
the number of sites that, if toggled, would decrease the or-
ganism’s fitness. While this is easy to saturate for such a
simple model system, for more sophisticated encodings the
complexity metric counts the number of sites that contribute
constructively to an organism’s phenotype. Further, com-
plexity can be measured even more accurately by using more
sophisticated information-theory techniques where all possi-
ble mutations are considered at each site, and ideally some
epistatic interactions.

Ecological Metric

The ecological metric measures the amount of information
in the population as a whole. While organisms may not con-
tain increasing amounts of information in their individual
genomes (as measured by the complexity metric), they could
still be increasingly diverse and therefore contain increased
information collectively in the population. We can measure
such a phenomenon by looking at the diversity of persistent
genotypes reduced to informative sites. Complex ecologies
in which multiple subsets of the population are using differ-
ent information about the environment to survive are likely
to be characterized by a relatively balanced distribution of
individuals across the various successful phenotypes. Thus,
we use Shannon entropy, a popular metric of diversity that
also measures evenness, to measure the diversity of the per-
sistent genotypes and calculate the ecological metric.

Figure 3: Amount of change at over time in varying envi-
ronments. As measured by the change metric, fitness shar-
ing increases the amount of change in the population over
time. Conversely, a routinely changing environment leads
to spikes in change that quickly drop as the population con-
verges again. Shaded region represents a bootstrapped 95%
confidence interval around the mean.

Results
To ensure that these metrics are capturing the dynamics that
we want them to, we tested them on a range of variants of our
basic NK model, described above. The preliminary results
for each metric are presented here.

Change Metric
For a system to exhibit open-ended evolution, it is clearly
necessary for the composition of the population to be chang-
ing in some meaningful way, although this change needn’t
always be novel. We measured the meaningful change in our
system under varying environmental conditions to confirm
that this metric responds intuitively. As shown in Figure 3,
several environmental changes increase the amount of mean-
ingful change found in the populations over time. When or-
ganisms are forced to share fitness between others with the
same genotype, the amount of change increases and remains
higher than the baseline over time. Conversely, when the
environment changes frequently, there is an initial spike of
increased change that quickly drops back down to the base-
line value.

The majority of environmental conditions we tested pro-
duced dynamics over time qualitatively similar to the base-
line treatment. In Figure 4 we show the amount of meaning-
ful change in populations at the final time point in more envi-
ronmental conditions. Larger genomes (N) lead to increased
meaningful change because they allow for a larger search
space that the population can continuously mutate within,
leading to more beneficial mutants. A higher mutation rate
leads to increased meaningful change because mutations are
necessary to create any meaningful change in our system. A
smaller population size produces more meaningful change



Figure 4: Amount of change at final generation in varying
environments. As measured by the change metric, environ-
mental conditions that increase the amount of change at the
final time point include: increasing the size of the genome
(N), increasing the mutation rate, decreasing the population
size, and implementing fitness sharing. Shaded region rep-
resents a bootstrapped 95% confidence interval around the
mean.

because a small population cannot hold as many different
genomes at one time and therefore there are more genomes
that can arise that are different than what is in the previous
population. Finally, fitness sharing can produce increased
meaningful change because it creates a constant pressure for
the population to adapt away from whatever is the current
dominant genotype.

While change is a metric often not considered in discus-
sions of open-ended evolution, these results show that the
amount of meaningful change can reflect differences in the
environment and evolution of the populations and is likely
a necessary dynamic for open-ended evolution. Our change
metric responds in intuitive ways to variations in parame-
ter settings, suggesting that it is a reliable indicator of the
dynamics we designed it to capture.

Novelty Metric
The continuous production of meaningfully new genomes is
necessary for what is generally considered open-ended evo-
lution, because without meaningfully novel genomes, noth-
ing “interesting” can emerge. Therefore, our second metric
measures the amount of meaningfully novel genomes (i.e.,
have never been recorded previously) that have persisted in a
population since the previous time point. As shown in Fig 5,
a higher mutation rate increases the amount of novelty gen-
erated by a system. This result is to be expected, because
more mutations make it easier to cross fitness valleys and
otherwise traverse the fitness landscape. As expected, even
at a high mutation rate, novelty does start to decrease over
time as the search space is explored.

We again found that the majority of treatments had a qual-

Figure 5: Amount of novelty over time with varying mu-
tation rate. The novelty metric measures the number of
completely new meaningful genomes that have lineages that
persisted since the previous time point. As the mutation rate
increases, more novelty is continuously produced, however
at all mutation rates, the novelty decreases over time. Mu-
tation rate 3 is the baseline treatment in previous graphs.
Shaded region represents a bootstrapped 95% confidence in-
terval around the mean.

itatively similar trajectory over time and therefore in Fig-
ure 6 we show only the final novelty value. As predicted, the
baseline treatment has stopped producing meaningful nov-
elty by the final time point. However, many environments
do allow for continuing production of novelty, specifically
increased epistasis (K), larger genomes (N), higher mutation
rate, differing population size, and fitness sharing. Epis-
tasis increases the value of the novelty metric at the final
generation because the population must explore a rugged
fitness landscape instead of converging to a single fitness
peak, leading to more adaptive novel genomes to discover
throughout evolution. Larger genomes allow for more nov-
elty at the final generation because they increase the size of
the search space and therefore how many genomes can ever
be considered novel. Smaller population sizes increase nov-
elty at the final generation because it takes the population
longer to discover many genomes, leaving enough to still
be novel at the end of the experiment. Conversely, larger
population sizes allow for some increase in novelty over the
baseline treatment because the increased number of organ-
isms makes it easier for more of the search space to be ex-
plored. Finally, fitness sharing increases the final novelty by
creating a selective pressure to explore genotypes that are
not currently common in the population; many of these will
be novel, as novel genotypes are, by definition, not present
in the population.

These results highlight the power of the novelty metric to
identify environments and populations that have the poten-
tial to be open-ended due to the high number of new geno-
types being consistently discovered. Novelty is likely neces-



Figure 6: Amount of novelty at final time point in varying
environments. At the final time point, no meaningful nov-
elty is found in our baseline populations. However, increas-
ing the amount of epistasis (K), increasing genome length
(N), increasing mutation rate, decreasing population size,
and enabling fitness sharing increase the amount of novelty
produced in the final time point.

sary, but not sufficient, for open-ended evolution because if
nothing new is being produced by a population, neither the
complexity nor the ecological metric can be non-zero.

Complexity Metric
The presence of highly complex organisms is a property of
biological evolution that is often cited as something that ar-
tificial life systems have yet to achieve. Figure 7 shows the
trajectories of the complexity metric over time in popula-
tions with and without fitness sharing. In our baseline treat-
ment, organisms cannot evolve to be more complex than N.
As a result, the complexity increases over time and then sat-
urates. Conversely, fitness sharing leads to lower complexity
because it weakens the pressure to be at the very top of a fit-
ness peak (where complexity would be maximized).

Because of the simplicity of our system, the complexity
metric stabilizes quickly in most treatments and therefore
we show only the final time point values for complexity in
Figure 8. The baseline treatment was able to reach the max-
imum complexity possible for a 20-bit genome and most
of the environments did not decrease in the final complex-
ity value. When the genome length was increased to 100
bits, the populations were also able to reach the new max-
imum complexity value of 100. However, high mutation
rate, smaller population size, and fitness sharing all some-
what decreased the final complexity achieved on average. A
high mutation rate decreased the final complexity because
it introduced more deleterious mutations and therefore in-
creased the percentage of the population that has just mu-
tated away from the fitness peak at any point in time. A
smaller population size decreased the complexity somewhat
because smaller populations are more susceptible to genetic

Figure 7: Amount of complexity over time with fitness
sharing. The baseline treatment (red) is able to reach the
top complexity allowed by the model quickly and remain at
that value. When fitness sharing is introduced (blue), the
population is not able to attain the top complexity value.
Shaded region represents a bootstrapped 95% confidence in-
terval around the mean.

drift. As discussed previously, fitness sharing decreased the
overall complexity achieved by the population due to the
weakened selection for climbing fitness peaks when there
are many organisms on that peak.

These results highlight the strengths of the complexity
metric because the NK model is not able to continuously
increase the complexity metric over time. Once the maxi-
mum complexity allowed by the genome length is reached,
no higher value is possible. It is likely that a continuously
increasing complexity metric is necessary for an open-ended
system, as appears to be the case with the biosphere. This
is only possible in a system with a sufficiently complex en-
vironment such that there is always new information to be
integrated into the genome.

Ecology Metric
Finally, a diverse population of interacting organisms pro-
motes feedback loops that allow for the continuous creation
of new and complex adaptations. Even if a system is not
evolving more complex individual organisms, it may still
be exhibiting interesting dynamics because it allows for a
large number of niches that can be occupied by a diversity
of organisms. Our ecology metric captures this dimension
of open-ended evolution. As shown in Figure 9, if the popu-
lation is large enough, the ecology metric will remain fairly
stable over evolutionary time. Larger population sizes led
to higher overall ecology values, while small populations
rapidly converged to a single genotype.

The majority of environments led to a complete conver-
gence by the final time point and therefore we show only
their final values in Figure 10. The only treatments that did
not drop to an ecology value of 0 were the large population



Figure 8: Amount of complexity at final time point in
varying environments. Most of the treatments reach the
maximum complexity allowed by the genome length (20 or
100) and cannot continue to increase. High mutation rate,
smaller populations, and fitness sharing decrease the final
complexity achieved by the populations on average.

Figure 9: Amount of ecology over time with varying pop-
ulation size. At larger population sizes, ecology (measured
by Shannon diversity of meaningful genomes) is non-zero
throughout evolution. At smaller population sizes, the ecol-
ogy value drops to 0, indicating there is no diversity. Shaded
region represents a bootstrapped 95% confidence interval
around the mean.

Figure 10: Amount of ecology at final time point in vary-
ing environments.

size and fitness sharing. Because fitness sharing specifically
rewards organisms with less common genotypes, it promotes
a stably high ecology value over time. This result shows the
trade-off inherent in fitness sharing because it leads to higher
ecology at the expense of lower complexity.

We hypothesize that a continuously increasing ecology
metric in addition to a continuously increasing complexity
metric are necessary for an evolutionary system to truly be
open-ended as we observe in the biosphere.

Conclusions
Though our simulation is fairly simple, these initial tests
demonstrate that our metrics respond in an intuitive way to
the dynamics in an evolutionary system. Thus, they should
be able to detect systems that are theoretically capable of
achieving open-ended evolution. First, it is clear that for
new behaviors to evolve in a system, new genomes need to
be evolving. Therefore, both the change and novelty metrics
would need to be non-zero – though they could be stable
instead of increasing since both metrics measure a change.

Second, continuously increasing maximum complexity
with a stable environment would imply increasing biotic
interactions, potentially cooperative or complex competi-
tive interactions. If maximum complexity is increasing in
a population, at least one organism must be incorporating
more information into its genome than any organism had be-
fore. This information can be about the environment up to
a point. However, if the environment is not changing, max-
imum complexity will not be able to increase unboundedly
without biotic interactions between organisms. Therefore,
continuously increasing maximum complexity implies that
interesting biotic interactions are evolving in a system.

Finally, a continuously increasing ecological metric in a
stable environment implies an ecosystem is forming; if the
ecology metric is increasing, the informative diversity in the
population is increasing. For diversity to be increasing, new



niches must be emerging – if there were only a single niche,
the best genotype for that niche would fill it and take over
the population. The only way for diversity to be maintained
for a meaningful length of time is for new niches to be cre-
ated. While new niches can emerge from abiotic factors, if
the environment is not changing, those will all eventually
fill. Therefore, the only way for an indefinite series of new
niches to form (which is required for an unbounded increase
of the ecological metric), is via biotic interactions between
organisms in the population. Those biotic interactions could
fall into a number of categories such as predator and prey,
mutualism, parasitism, or commensalism, but as the number
of them increase, a complex ecosystem emerges.

We can use these metrics to understand the impact of in-
cremental changes to a system. In order to apply the scien-
tific method to a monolithic problem like designing an open-
ended evolutionary system, we need to be able to break that
problem down into components that can be addressed in a
systematic manner. Moreover, one of the primary goals in
building such a system is to understand what components
are necessary to do so. By looking at the effects that indi-
vidual, controlled changes to a system have on this suite of
metrics, we can more effectively work towards these goals.

The metrics we propose here are applicable not only to
digital systems, but are also relevant to experimental bi-
ological systems. The Long-Term Evolution Experiment
(LTEE) (Lenski et al., 1991) is an exemplar of experimen-
tal evolution, consisting of 12 populations of the bacteria E.
coli, which have been evolving independently for more than
60,000 generations. As detailed in (Taylor et al., ress), the
LTEE exhibits many hallmarks of open-ended evolution, in-
cluding the criteria we propose here. Because fitness within
the LTEE is best described by an unbounded power law
function (Wiser et al., 2013; Lenski et al., 2015), the system
meets the change metric: populations continue to change in
non-trivial ways over time. Further, studies of individual
populations within the LTEE have shown numerous exam-
ples of the generation of novelty, including exploration of
new areas of the fitness landscape (Tenaillon et al., 2016),
repeated selective sweeps (Maddamsetti et al., 2015), and
new diversity arising after such sweeps (Blount et al., 2012).
Towards the ecology metric, several populations within the
LTEE demonstrate frequency-dependent fitness dynamics
(Ribeck and Lenski, 2015; Rozen and Lenski, 2000; Le Gac
et al., 2012; Maddamsetti et al., 2015), which are necessarily
cases of ecological interactions. Included in these cases of
frequency dependence is a special case (Blount et al., 2008,
2012; Turner et al., 2015a) driven by cross-feeding and spe-
cialization on different resources (Turner et al., 2015b). Be-
cause all of the populations in the LTEE began as single
cells, all ecological complexity in any populations must have
arisen during the course of the experiment, and thus satisfies
the ecological metric. The complexity metric is inherently
harder to quantify in a biological system than in a compu-

tational one, but recent large scale genome sequencing from
the LTEE (Tenaillon et al., 2016) offers the promise of be-
ing able to measure complexity at the genome level over
the course of the experiment. Because our metrics can be
applied to a well-studied biological example of open-ended
evolution, they can be used to compare dynamics in a broad
range of systems and enable the field of artificial life to move
forward in quantifiable steps to open-ended evolution.
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